100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary lectures Correlational research methods €6,99
In winkelwagen

Samenvatting

Summary lectures Correlational research methods

1 beoordeling
 102 keer bekeken  8 keer verkocht

Summary lectures correlational research methods

Voorbeeld 3 van de 24  pagina's

  • 27 september 2019
  • 24
  • 2018/2019
  • Samenvatting
Alle documenten voor dit vak (7)

1  beoordeling

review-writer-avatar

Door: Bjorn225 • 5 jaar geleden

avatar-seller
imke-ginneken
Correlational Research Methods

Inhoudsopgave
Correlational Research Methods ...................................................................................................................... 1
Lecture 1 – 28/08/2018 ...................................................................................................................................... 3
Null hypothesis significance testing ............................................................................................................... 3
Pearson’s Correlation Coefficient ................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
P-Value ........................................................................................................................................................... 4
Lecture 2 – 03/09/2018 ...................................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
Confidence interval for r ................................................................................................................................ 5
Assumptions for r ........................................................................................................................................... 5
Power ............................................................................................................................................................. 5
Squared Correlation: r2XY ................................................................................................................................ 5
“Explanations” for the relationship between x and y: ................................................................................... 6
Simple linear regression analysis .................................................................................................................... 6
The linear simple regression model ............................................................................................................... 6
Simple regression analysis .............................................................................................................................. 6
Lecture 3 – 10/09/2018 ...................................................................................................................................... 7
Regression analysis ......................................................................................................................................... 7
Two ways to interpret Y’ ................................................................................................................................ 7
Interpretation regression coefficient b^1 ....................................................................................................... 7
Standardized regression coefficient () ......................................................................................................... 7
Interpretation unstandardized regression coefficient b^1: ........................................................................... 7
Interpretation standardized regression coefficient ^1:................................................................................ 7
Use b ............................................................................................................................................................... 7
Use  .............................................................................................................................................................. 7
Sum of squares ............................................................................................................................................... 8
Lecture 4 – 17/09/2018 ...................................................................................................................................... 8
Multiple regression ........................................................................................................................................ 8
Multiple Regression analysis .......................................................................................................................... 8
What do we need to know? ........................................................................................................................... 8
The Linear Multiple Regression model ........................................................................................................... 8
Partial slopes .................................................................................................................................................. 9
Main questions Multiple Regression analysis ................................................................................................ 9
Lecture 5 – 24/09/2018 ...................................................................................................................................... 9
Proportion explained variance ....................................................................................................................... 9
F-Test for the entire model ............................................................................................................................ 9
3. How well does every predictor explain/predict separately? .................................................................... 10
What happens with the explained variance if I remove a predictor? .......................................................... 10
.......................................................................................................................................................................... 11
4. Which predictor is the most important one? ........................................................................................... 12
Lecture 6 – 1/10/2018 ...................................................................................................................................... 12
Hypothesis Testing versus Estimating .......................................................................................................... 12
Multiple Linear Regression Analysis: Starting Point ..................................................................................... 12
Using Multiple regression for ....................................................................................................................... 13
Uniquely explained variance ........................................................................................................................ 13
Lecture 7 – 08/10/2018 .................................................................................................................................... 14


1

, Model with k predictors: Standard Regression Analysis .............................................................................. 14
Adjusted R-square ........................................................................................................................................ 14
Controlling for confounders ......................................................................................................................... 14
Nested models.............................................................................................................................................. 14
What do we use nested model for? ............................................................................................................. 14
Test statistic F ............................................................................................................................................... 14
Hierarchical Regression analysis................................................................................................................... 15
Lecture 8 – 23/10/2018 .................................................................................................................................... 15
Multiple Regression with Dummy variables ................................................................................................. 15
Dummies ...................................................................................................................................................... 15
Categorical values......................................................................................................................................... 15
R-square ....................................................................................................................................................... 16
Dummy Coding ............................................................................................................................................. 16
Lecture 9 – 30/10/2018 .................................................................................................................................... 16
Interaction .................................................................................................................................................... 16
Conceptual Model with an Interaction Effect .............................................................................................. 16
Interpreting main effects in the presence of interaction effects ................................................................. 17
Simple effects ............................................................................................................................................... 17
Lecture 10 – 6/11/2018 .................................................................................................................................... 17
Moderator versus Mediator and Common Cause ........................................................................................ 18
MR with Interaction between Quantitative Variables ................................................................................. 18
Interpretation of centered scores ................................................................................................................ 18
Interpreting the significance of interactions: “Probing” .............................................................................. 18
Multicollinearity ........................................................................................................................................... 18
Variance Inflation Factor (VIF) ...................................................................................................................... 19
Lecture 11 – 13/11/2018 .................................................................................................................................. 20
Overview of statistical techniques ............................................................................................................... 20
Binary Logistic Regression ............................................................................................................................ 20
Determine Logistic Function in Empirical Data ............................................................................................ 21
From probabilities to Odds ........................................................................................................................... 21
From Odds to Logit ....................................................................................................................................... 22
The corresponding function for the Logit..................................................................................................... 22
Lecture 12 – 20/11/2018 .................................................................................................................................. 22
Significance testing ....................................................................................................................................... 22
Pseudo R-square Measures .......................................................................................................................... 23
Classification tables ...................................................................................................................................... 23
Lecture 13 – 27/11/2018 .................................................................................................................................. 24
Q&A .............................................................................................................................................................. 24




2

, Lecture 1 – 28/08/2018
Exam = Multiple choice questions
+ Bonus tutorial quizzes

▪ Simple random sampling
Every member in the population has an equal chance to be sampled
▪ Stratified sampling
The population is divided into strata (e.g., based on gender, age); within each stratum a
random sample is drawn
▪ Convenience sampling
Sample of people who are readily available (e.g., people who are present in the cafeteria,
family and friends of the researcher, first year psychology students)

Descriptive statistics: summarizing data
- Measures of central tendency
o Mean
o Median: the score that separated the higher half of data from the lower half
o Mode: the score that is observed most frequently
- Measures of dispersion
o Variance
o Standard deviation

Inferential statistics: if we want to make generalization about the population, descriptive statistics of
the sample are not enough. We use inferential statistics to draw conclusions about the population,
based on the information from the sample.
- Null hypothesis significance testing
- Confidence interval estimation

Null hypothesis significance testing
1. We formulate the null and alternative hypothesis
H0:  = 6.0
H1:   6.0
2. We make a decision-rule
If the P-value < Alpha, we reject the null hypothesis
3. We obtain the T- and P-value from the output
→ Sig. (2-tailed) = two-tailed P value
4. We either reject of keep the null hypothesis and draw
conclusions
We keep the null hypothesis, because P > .05. We do not
have enough evidence to conclude that the average
exam score in the population does not equal 6.0.

Higher than Alpha or lower than Alpha → Reject
It’s very unlikely that it’s correct
Hence accept H1 as opposed to H0

95% Confidence Interval of the Difference
→ we can say with 95% certainty that  lies between … and …
Definition: when we carry out an experiment over and over again, the 95% confidence interval will
contain the real value of the parameter of interest (e.g., ) in 95% of the cases.
Interpretation: based on the data, this range of values probably contains .


3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper imke-ginneken. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  8x  verkocht
  • (1)
In winkelwagen
Toegevoegd