100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Linear Algebra €7,40   In winkelwagen

Samenvatting

Summary Linear Algebra

 7 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

Linear algebra studies vector spaces and linear mappings between them. It involves matrices, determinants, eigenvalues, and eigenvectors, providing a foundation for various fields such as computer science, physics, and engineering.

Voorbeeld 4 van de 255  pagina's

  • 26 juli 2024
  • 255
  • 2023/2024
  • Samenvatting
avatar-seller
Notes on Mathematics - 1021

Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam




1
Supported by a grant from MHRD

,2

,Contents

I Linear Algebra 7

1 Matrices 9
1.1 Definition of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Operations on Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Multiplication of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Some More Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Submatrix of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Matrices over Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Linear System of Equations 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Definition and a Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 A Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Row Operations and Equivalent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Gauss Elimination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Row Reduced Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Gauss-Jordan Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Existence of Solution of Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.1 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.2 Equivalent conditions for Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.3 Inverse and Gauss-Jordan Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.1 Adjoint of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Finite Dimensional Vector Spaces 49
3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3

, 4 CONTENTS

3.1.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Linear Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Important Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Ordered Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Linear Transformations 69
4.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Matrix of a linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Rank-Nullity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Similarity of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Inner Product Spaces 87
5.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Gram-Schmidt Orthogonalisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Orthogonal Projections and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Matrix of the Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Eigenvalues, Eigenvectors and Diagonalization 107
6.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Diagonalizable matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Sylvester’s Law of Inertia and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 121


II Ordinary Differential Equation 129

7 Differential Equations 131
7.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.1 Equations Reducible to Separable Form . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3.1 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 Miscellaneous Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.6 Initial Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.6.1 Orthogonal Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.7 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Second Order and Higher Order Equations 153
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 More on Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.1 Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.2 Method of Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 Second Order equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . 160
8.4 Non Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.5 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.6 Higher Order Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . 166

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper vishnubharla. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,40. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 71498 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,40
  • (0)
  Kopen