Data Science & Society
Notes of the Lectures, Assignments, and Literature
Not representative of all the matter
I left out material I considered obviou s knowledge
Some parts are copied from other sum maries
Skipped some lecture material since it ’s already covered in Literature
Content
Week 1 – Stair Reynolds – IS ......................................................................................................... 2
Lecture 1 – Catching up with SQL .................................................................................................. 2
Assignment 1: Bash Fundamentals ............................................................................................... 3
Lecture 2 – Applied Data Science for Student Empowerment ..................................................... 4
Lecture 3 – The Knowledge Discovery Process for Societal Impact ........................................... 5
Week 2 – Chapman – CRISP-DM 1.0 ............................................................................................. 6
Week 2 – Davenport – Data Scientist: Sexiest Job of 21st Century .............................................. 9
Week 2 – Chang Grade – NIST Big Data Interoperability Framework ........................................ 10
Week 2 – Spruit, Lytras – Applied Data Science.......................................................................... 14
Week 2 – Braschler – ADS............................................................................................................ 16
Assignment 2 – Methods & Statistics in R .................................................................................. 19
Lecture 4 – Hadoop & MapReduce .............................................................................................. 20
Lecture 5 – Methodology, Statistics and Pitfalls ......................................................................... 23
Week 3 – Lazer – Google Flu: Big Data Traps ............................................................................. 25
Week 3 – Broniatowski, Lazer – Twitter: Big Data Opportunities ............................................... 27
Week 4 – Dean, Ghemawat – MapReduce .................................................................................. 28
Week 4 – Chambers, Zaharia – Spark Guide [Chapters 1-3] ...................................................... 31
Week 4 – Ambrose – Big Data in historical perspective ............................................................. 35
Assignment 3 – MapReduce in Hadoop & Spark ........................................................................ 42
Lecture 6 - NoSQL, Spark & Big Data ............................................................................................ 43
Lecture 7 – Statistics 2 ................................................................................................................. 48
1
,Week 1 – Stair Reynolds – IS
Quite basic concepts of Information Systems. Recommend skimming through the pages and
read the bold definitions and meaning.
Lecture 1 – Catching up with SQL
• Some definitions
o Create: Creation of database objects
o Alter: Modify the structure and/or the characteristics of database objects
o Drop: Deletion of database objects
o Truncate: Deletion of data in tables without altering the structure
• The core parts of SQL:
o Data definition language (DDL): Used to define database structures
▪ CREATE TABLE, DROP TABLE
o Data manipulation language (DML): define, update and request data (queries)
▪ INSERT (add row), UPDATE (modify values in existing row/collection of
rows), DELETE (delete a row/collection of rows), SELECT (select rows),
DISTINCT (addition to select, to prevent duplicate rows are shown),
WHERE (addition for criteria records should meet), AND/OR/NOT
(addition for multiple matching criteria), BETWEEN (self-explanatory),
ORDER BY (to sort results), GROUP BY (for subtotals), HAVING (to limit
how much data is shown)
▪ Built-in SQL functions
• COUNT: the number of rows that match the criteria
• MIN: minimal value in certain column
• MAX: maximum value in certain column
• SUM: of values in certain column
• AVG: average of values in certain column
▪ A query retrieves data from one or more tables and creates a new
(temporary) table
▪ Subqueries are queries that are used as input for another query
2
,Assignment 1: Bash Fundamentals
Command Action
cat Displays output of a file
cd Change directory
cd .. Go up one directory
chmod Change permission to read, write and execute (000 = none, 777 = all)
cp Copy file to given directory
echo Returns given value (functionality of the echo commands can vary) (‘-e’ is used
if you use escapes in your string, such as ‘\n’)
grep Filters a given input
mkdir Create a directory
mv Move file to another directory
ls Returns names of files and directories in your current directory (use ‘-l’ for
additional information)
paste Merge two output streams by column (use ‘>’ to save it in a new file)
pwd Return full path of current directory
rm Remove a file (use ‘rm -r’ for an entire directory including all content)
sort Sort an input, ‘-r’ to reverse and ‘-n’ for numeric
| Use output of command before ‘|’ as input for the command after ‘|’
> Get the output of the command and write it to a file
>> Get the output of a command and add it to a file
* Placeholder for every character or sequence
~ Home directory
# Indicated comment (everything on the same line after ‘#’ is ignored)
\n \t Character for new line and a tab
Bash scripts
You can create a bash-script to bundle a number of commands. This is just a text-file with a
.sh extension. You can execute the script by typing the path to the script in the command line.
3
, Lecture 2 – Applied Data Science for Student Empowerment
Applied Data Science is where Analytical Applications are combined with Data Science
Data Science:
- Theoretical
- Algorithms
Applied Data Science:
- Solution-oriented
- Meta-Algorithmic Models
Citizen Data Science:
- Applied
- Automated Software Tools
Self-Service Capability: “To empower non-
data scientist with automated software
tools and meta-algorithmic models to self-
service their own data analyses on their
own data sources in a reliable, usable, and
transparent manner.
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper samoyediran4. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.