Infinite Regress of Recurring Questions and Answers
5 keer bekeken 0 keer verkocht
Vak
Infinite Regress of Recurring
Instelling
Infinite Regress Of Recurring
Infinite Regress of Recurring Questions and Answers
Claude Gratton
University of Sudbury
Follow this and additional works at:
Part of the Philosophy Commons
Gratton, Claude, "Infinite Regress of Recurring Questions and Answers" (1997). OSSA Conference Archive.
48.
This Paper is brough...
infinite regress of recurring questions and answer
i examine a number of infinite regress arguments
some philosophers believe that some infinite regre
Geschreven voor
Infinite Regress of Recurring
Infinite Regress of Recurring
Verkoper
Volgen
StudyCenter1
Ontvangen beoordelingen
Voorbeeld van de inhoud
University of Windsor
Scholarship at UWindsor
OSSA Conference Archive OSSA 2
May 15th, 9:00 AM - May 17th, 5:00 PM
Infinite Regress of Recurring Questions and Answers
Claude Gratton
University of Sudbury
Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive
Part of the Philosophy Commons
Gratton, Claude, "Infinite Regress of Recurring Questions and Answers" (1997). OSSA Conference Archive.
48.
https://scholar.uwindsor.ca/ossaarchive/OSSA2/papersandcommentaries/48
This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at
Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized
conference organizer of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Abstract:
I examine a number of infinite regress arguments whose infinite regresses are presented or
described in terms of recurring questions and answers in order to determine whether such recurring
questions have any role in generating these infinite regresses, or in disqualifying the recurring
answers. I argue that despite the existence of such infinite regress arguments and the suggestions of
some philosophers, these recurring questions have no such roles. Some ways of handling these
infinite regress arguments are then proposed.
***
The infinite regress in some infinite regress arguments is presented or described in terms of recurring questions
and answers. There are a few reasons why I want to examine the role of such recurring questions. First, they are
sometimes used to capture the gist of an infinite regress argument. A case in point is Bradley's famous infinite
regress argument against the reality of relations. Stout summarizes the argument's complex regress-generating
component in the following way: (1) "In its simple form the whole point of the argument is contained in the
reiterated question—What connects the relation and its terms?".1 Secondly, infinite regress arguments are
typically presented in a very terse way, and so the mere fact of using or referring to recurring questions in such a
compact context gives the impression that such questions have an important function. Thirdly, the comments of a
few philosophers suggest that these questions do have a role to play in either the derivation of an infinite regress,
or in the disqualification of the recurring answers. I will examine their comments and some examples in order to
determine the roles of such questions. This discussion will then lead to a few suggestions regarding our handling
of such infinite regress arguments.
Some philosophers believe that some infinite regresses are the result of recurring questions. Consider J.W.
Dunne's comments.
(2) Now, a series [i.e. a regress] may be brought to light as the result of a question. Someone might
enquire, 'What was the origin of this man?', or a child learning arithmetic might set to work to
discover what is the largest possible whole number. The answer to the first question has not yet
been ascertained: the answer to the second can never be given. It will be seen, however, that the
reply in each case must develop as a series of answers to a series of questions. In the first instance,
we reply that the man is descended from his father; but that only raises the further and similar
question, 'What was the origin of his father?'. In the second case the child will discover that 2 is a
greater number than 1; but he is compelled to consider then whether there is not a number greater
than 2—and so on to infinity. A question which can be answered only at the cost of asking
another and similar question in this annoying fashion was called by the early philosophers,
'regressive', and the majority of them regarded such a 'regress to infinity' with absolute
abhorrence.2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper StudyCenter1. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €12,72. Je zit daarna nergens aan vast.