100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Lectures Logic €3,49
In winkelwagen

College aantekeningen

Lectures Logic

 39 keer bekeken  3 keer verkocht

Lecture notes of 34 pages for the course Logic and Sets at VU (Lecture notes Logic)

Voorbeeld 4 van de 34  pagina's

  • 1 november 2019
  • 34
  • 2017/2018
  • College aantekeningen
  • Onbekend
  • Alle colleges
Alle documenten voor dit vak (6)
avatar-seller
cdh
Hoorcollege 1 Logic
sections:
1.1 (declarative sentences)
1.3 (propositional logic as a formal language)
1.4.1 (the meaning of logical connectives) 6 februari 2018


Declarative sentences
● A declarative sentence (or proposition) is a statement that is true or false.
● Argument abstraction
○ Example:
■ If the train arrives late, and there are no taxis at the station, then Jane
is late for her meeting.
■ Jane is not late for her meeting.
■ The train does arrive late.
■ Therefore, there are taxis at the station.

■ If it is raining, and John did not take his umbrella with him, then he will
get wet.
■ John is not getting wet.
■ It is raining.
■ Therefore, John did take his umbrella with him.
○ Key of translation
■ p the train arrives late
■ q there are taxis at the station
■ r Jane is late for her meeting

■ p it is raining
■ q John takes his umbrella with him
■ r John is getting wet.
○ Abstraction:
■ If p and not q, then r.
■ Not r. p. Therefore, q.
○ Formalization:
■ (((p ^ -q) → r) ^ (-r ^ p)) → q
○ Validity:
■ Validity of the two arguments due to the logical form.
■ It does not depend on the actual content of p, q and r.
● Symbols of propositional logic
○ Propositional variables (which can be true or false):
■ p, q, r, …
○ Connectives:
■ ^ ‘and’ (conjunction)
■ v ‘or’ (disjunction)
■ ⊕ ‘either … or … ‘ (‘exclusive or’)

■ ⇁ ‘not’ (negation)

, ■ → ‘if … then … ‘ (implication)

■ ↔ ‘ if and only if’ (bi - implication)
■ Not in the scope of propositional logic are constructs like:
● for all, there exists (will be treated in lecture 6)
● must, may, always, eventually, I know that
● Sentences and formulas:
○ propositional structure of sentences
■ 5>3 p
■ grass is green p
■ grass is green and roses are blue p^q
■ if x > 1, then x^2 ≠ x p →⇁ q
● What are the p and q in the last example?
○ ⇁p where p represents “I wear glasses”
○ q where q represents “I don’t wear glasses”
● Formulas of propositional logic
○ Building blocks:
■ p, q, r, … are propositional variables
■ ⇁ is a unary connective (takes one argument)
■ ^, v, ⊕, →, ↔, are binary connectives (takes multiple arguments)
○ The construction of formulas:
■ Inductive definition:
● (BASE STEP) every propositional variable is a formula
● (CONSTRUCTION STEPS)
1. if Φ is a formula, then so is (⇁ Φ)
2. if Φ and ψ are formulas, then so are (Φ ^ ψ), (Φ v ψ),
(Φ ⊕ ψ), (Φ → ψ) and ( Φ ↔ ψ)
● Parsing a formula
○ A formula can be reconstructed from its parse tree:






, ○
● Omitting parentheses
○ To omit parentheses from formulas, without causing ambiguity, we use the
priority schema:





■ Question: Which parentheses can be omitted from?
● None
● Truth value semantics for propositional logic
○ Formulas of propositional logic are used to express declarative statements,
which are either true or false.
○ We introduce the truth values Τ and F, corresponding to truth and falsehood,
respectively.
○ The truth value of a composite formula (like Φ ^ ψ) is determined by the truth
values of its components Φ and ψ.
○ For each connective this functional behavior is expressed by its truth table.
● Negation
○ A negation ⇁ Φ (“not Φ”) is
{ true if Φ is false
{ false if Φ is true




● Conjunction
○ A conjunction Φ ^ ψ (“Φ and ψ”) is
{ true if Φ is true and ψ is true
{ false in all other cases

, ● Disjunction
○ A disjunction Φ ^ ψ (“Φ or ψ”) is
{ true if Φ is true, or ψ is true, or both;
{ false otherwise




● Inclusive versus exclusive or
○ Examples in natural language:
■ Inclusive:
● Do you take sugar or cream in your coffee?
■ Exclusive:
● Do you want a cappuccino or an espresso?
○ Exclusive or
■ An exclusive or Φ ⊕ ψ (“either Φ or ψ”) is
{ true if either Φ or ψ is true (but not both)
{ false otherwise




● Implication

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper cdh. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50064 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,49  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd