100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Course GW4003MV Advanced Research Methods €16,46
In winkelwagen

Samenvatting

Summary Course GW4003MV Advanced Research Methods

 31 keer bekeken  2 keer verkocht

Summary Course GW4003MV Advanced Research Methods

Voorbeeld 4 van de 60  pagina's

  • 30 augustus 2024
  • 60
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (36)
avatar-seller
lonvanalst
Summary Course GW4003MV Advanced Research Methods


Workgroup session 1: DAGs

1. Re-visit the DAG language from lecture 1, the literature and the knowledge video on
DAGS. Describe the meaning of the following terms: path, backdoor path, causal
path, confounding, collider, blocking and unblocking?

Knowledge video 1: Directed Acyclic Graphs
DAG theory (I)
Directed Acyclic Graphs (DAGs) are graphical representations of the
causal structure underlying a research question:




DAG theory (II)
 DAGs help to visualize the causal structure underlying a research
question
 You need a priori theoretical/subject knowledge about the causal
structure to draw a DAG (e.g., from previous studies, literature,
common sense, ...)
 Collect data on all relevant variables
 ‘Simple’ rules can be applied to determine for which variables to
adjust in regression analysis and how to interpret the results

DAG terminology
1. Paths
2. Causal paths and backdoor paths
 avoid opening backdoor paths. Backdoor paths always need to be closed to answer your
research question in an unbiased manner. In that way you will remove the association that
runs through these paths from the association between the exposure and outcome and isolate
the association between the exposure and outcome that you are interested in. If you are
successful in that, you can draw cause and conclusions.
3. Open and closed paths, and colliders
4. Blocking open paths
5. Opening blocked path

1. Paths (I)
RQ: Influence of X on Y?

, A path is any route between exposure X and outcome Y
 Paths do not have to follow the direction of the arrows
Q: How many paths between X and Y?
A: 4 paths from X to Y
XY
XVY
XLY
XWY

1. Paths (II)
RQ: Influence of X on Y?




Answer: having data on all four paths is essential for answering the research question in an
unbiased manner.

2. Causal paths and backdoor paths (I)
RQ: Influence of X on Y?




 A causal path follows the direction of the arrows
 A backdoor path does not
Q: Which are causal or backdoor paths?
A: 2 causal paths
XY
XVY
A: 2 backdoor paths
XLY
XWY

2. Causal paths and backdoor paths (II)
RQ: Influence of X on Y?

,Answer:

3. Open and closed paths (I)
RQ: Influence of X on Y?




 All paths are open, unless they collide somewhere on a path
 A path is closed if arrows collide in one variable on that path
Q: How many paths are open and closed?
A: 3 open paths
XY
XVY
XLY
A: 1 closed path
XWY

3. Open and closed paths (II)
RQ: Influence of X on Y?




Answer:

4. Blocking open paths (I)
RQ: Influence of X on Y?

,  Open (causal or backdoor) paths transmit association
 The association between X and Y consists of
the combination of all open paths between them
 Here: all paths except X  W  Y

4. Blocking open paths (II)
RQ: Influence of X on Y?




 An open path is blocked when we adjust for a variable (L) along the
path
 This means that we remove the disruptive influence of L from the
association between X and Y
 How? By including variable L in the regression analysis
 Backdoor paths always need to be closed
 Causal paths need to be open/closed depending on RQ

5. Open blocked paths
RQ: Influence of X on Y?




 Including a collider (W) in the analysis means you open the blocked
backdoor path
 This introduces bias in the association between X and Y

Correlation does not imply causation
Correlation implies association (not causation):
- A statistical relationship between the treatment and outcome
- Knowing the value of one variable may provide information on the value of another
variable, but that does not mean that one caused the other
- Knowing that Zeus died 5 days after a heart transplant does not mean the transplant
caused Zeus’ death (Hernàn and Robins, 2020)
Causation:
- Difference between potential (i.e., counterfactual) outcomes

A statistical association equals the difference in potential outcomes if, and only if, the
identifiability conditions are met. For this, we need:
- Theory and subject knowledge (e.g., previous studies in literature)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lonvanalst. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €16,46. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 47561 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€16,46  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd