100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
ISYE 6501 Midterm 1 Updated 2024/2025 Verified 100% €7,78   In winkelwagen

Tentamen (uitwerkingen)

ISYE 6501 Midterm 1 Updated 2024/2025 Verified 100%

 13 keer bekeken  0 keer verkocht
  • Vak
  • ISYE 6501
  • Instelling
  • ISYE 6501

Does a SVM classifier need to be a straight line? - No, SVM can be generalized using kernel methods that allow for nonlinear classifiers. Software has a kernel SVM function that you can use to solve for both linear and nonlinear classifiers Should you scale your data in a SVM model? - Yes, so th...

[Meer zien]

Voorbeeld 2 van de 14  pagina's

  • 3 september 2024
  • 14
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • ISYE 6501
  • ISYE 6501
avatar-seller
ISYE 6501 Midterm 1
Does a SVM classifier need to be a straight line? - No, SVM can be generalized using kernel
methods that allow for nonlinear classifiers. Software has a kernel SVM function that you can use to
solve for both linear and nonlinear classifiers

Should you scale your data in a SVM model? - Yes, so the orders of magnitude are approximately
the same.

Data must be in bounded range.

Common scaling: data between 0 and 1

a. Scale factor by factor

b. Linearly



What if it's not possible to separate green and red points in a SVM model? - Utilize a soft classifier
-- In a soft classification context, we might add an extra multiplier for each type of error with a larger
penalty, the less we want to accept mis-classifying that type of point

Rows - Data points are values in data tables



Columns - The 'answer' for each data point (response/outcome)



Structured Data - Quantitative, Categorical, Binary, Unrelated, Time Series



Unstructured Data - Text



Support Vector Model - Supervised machine learning algorithm used for both classification and
regression challenges.

Mostly used in classification problems by plotting each data item as a point in n-dimensional space (n is
the number of features you have) with the value of each feature being the value of a particular
coordinate.

Then you classify by finding a hyperplane that differentiates the 2 classes very well. Support vectors are
simply the coordinates of individual observation -- it best segregates the two classes (hyperplane / line).

, What do you want to find with a SVM model? - Find values of a0, a1,...,up to am that classifies the
points correctly and has the maximum gap or margin between the parallel lines.



What should the sum of the green points in a SVM model be? - The sum of green points should be
greater than or equal to 1



What should the sum of the red points in a SVM model be? - The sum of red points should be less
than or equal to -1



What should the total sum of green and red points be? - The total sum of all green and red points
should be equal to or greater than 1 because yj is 1 for green and -1 for red.



First principal component - PCA -- a linear combination of original predictor variables which
captures the maximum variance in the data set. It determines the direction of highest variability in the
data. Larger the variability captured in first component, larger the information captured by component.
No other component can have variability higher than first principal component.

it minimizes the sum of squared distance between a data point and the line.



Second principal component - PCA -- also a linear combination of original predictors which
captures the remaining variance in the data set and is uncorrelated with Z¹. In other words, the
correlation between first and second component should is zero.

.



Soft Classifier - Account for errors in SVM classification. Trading off minimizing errors we make and
maximizing the margin.

To trade off between them, we pick a lambda value and minimize a combination of error and margin. As
lambda gets large, this term gets large.

The importance of a large margin outweighs avoiding mistakes and classifying known data points.




How should you find which coefficients to hold value in a SVM model? - If there is a coefficient
who's value is very close to 0, means the corresponding attribute is probably not relevant for
classification.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ACADEMICMATERIALS. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,78. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62491 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,78
  • (0)
  Kopen