100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Test Bank For Thomas calculus 11th edition solution manual All Chapters Included €14,60   In winkelwagen

Tentamen (uitwerkingen)

Test Bank For Thomas calculus 11th edition solution manual All Chapters Included

 10 keer bekeken  0 keer verkocht
  • Vak
  • Instelling
  • Boek

CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS AND THE REAL LINE 1. Executing long division, 0.1, 0.2, 0.3, 0.8, 0.9 " 9 9 9 9 9 œ œ œ œ œ 2 3 8 9 2. Executing long division, 0.09, 0.18, 0.27, 0.81, 0. 11 " œ œ œ œ œ 2 3 9 11 3. NT = necessarily true, NNT = Not necessarily true. Given: 2 &l...

[Meer zien]

Voorbeeld 4 van de 1057  pagina's

  • 7 september 2024
  • 1057
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
avatar-seller
CHAPTER 1 PRELIMINARIES

1.1 REAL NUMBERS AND THE REAL LINE
"
1. Executing long division, 9 œ 0.1, 2
9 œ 0.2, 3
9 œ 0.3, 8
9 œ 0.8, 9
9 œ 0.9

"
2. Executing long division, 11 œ 0.09, 2
11 œ 0.18, 3
11 œ 0.27, 9
11 œ 0.81, 11
11 œ 0.99

3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6.
a) NNT. 5 is a counter example.
b) NT. 2 < x < 6 Ê 2  2 < x  2 < 6  2 Ê 0 < x  2 < 2.
c) NT. 2 < x < 6 Ê 2/2 < x/2 < 6/2 Ê 1 < x < 3.
d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2.
e) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2 Ê 6(1/6) < 6(1/x) < 6(1/2) Ê 1 < 6/x < 3.
f) NT. 2 < x < 6 Ê x < 6 Ê (x  4) < 2 and 2 < x < 6 Ê x > 2 Ê x < 2 Ê x + 4 < 2 Ê (x  4) < 2.
The pair of inequalities (x  4) < 2 and (x  4) < 2 Ê | x  4 | < 2.
g) NT. 2 < x < 6 Ê 2 > x > 6 Ê 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2.
h) NT. 2 < x < 6 Ê 1(2) > 1(x) < 1(6) Ê 6 < x < 2

4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y  5 < 1.
a) NT. 1 < y  5 < 1 Ê 1 + 5 < y  5 + 5 < 1 + 5 Ê 4 < y < 6.
b) NNT. y = 5 is a counter example. (Actually, never true given that 4  y  6)
c) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y > 4.
d) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y < 6.
e) NT. 1 < y  5 < 1 Ê 1 + 1 < y  5 + 1 < 1 + 1 Ê 0 < y  4 < 2.
f) NT. 1 < y  5 < 1 Ê (1/2)(1 + 5) < (1/2)(y  5 + 5) < (1/2)(1 + 5) Ê 2 < y/2 < 3.
g) NT. From a), 4 < y < 6 Ê 1/4 > 1/y > 1/6 Ê 1/6 < 1/y < 1/4.
h) NT. 1 < y  5 < 1 Ê y  5 > 1 Ê y > 4 Ê y < 4 Ê y + 5 < 1 Ê (y  5) < 1.
Also, 1 < y  5 < 1 Ê y  5 < 1. The pair of inequalities (y  5) < 1 and (y  5) < 1 Ê | y  5 | < 1.


5. 2x  4 Ê x  2

6. 8  3x 5 Ê 3x 3 Ê x Ÿ 1 ïïïïïïïïïñqqqqqqqqp x
1

7. 5x  $ Ÿ (  3x Ê 8x Ÿ 10 Ê x Ÿ 5
4


8. 3(2  x)  2(3  x) Ê 6  3x  6  2x
Ê 0  5x Ê 0  x ïïïïïïïïïðqqqqqqqqp x
0

"
9. 2x  # 7x  7
6 Ê  "#  7
6 5x
Ê "
5
ˆ 10 ‰
6 x or  "
3 x

6 x 3x4
10. 4  2 Ê 12  2x  12x  16
Ê 28  14x Ê 2  x qqqqqqqqqðïïïïïïïïî x
2

,2 Chapter 1 Preliminaries
"
11. 4
5 (x  2)  3 (x  6) Ê 12(x  2)  5(x  6)
Ê 12x  24  5x  30 Ê 7x  6 or x   67

12.  x2 5 Ÿ 123x
4 Ê (4x  20) Ÿ 24  6x
Ê 44 Ÿ 10x Ê  22
5 Ÿ x qqqqqqqqqñïïïïïïïïî x
22/5

13. y œ 3 or y œ 3

14. y  3 œ 7 or y  3 œ 7 Ê y œ 10 or y œ 4

15. 2t  5 œ 4 or 2t  & œ 4 Ê 2t œ 1 or 2t œ 9 Ê t œ  "# or t œ  9#

16. 1  t œ 1 or 1  t œ 1 Ê t œ ! or t œ 2 Ê t œ 0 or t œ 2

17. 8  3s œ 9
2 or 8  3s œ  #9 Ê 3s œ  7# or 3s œ  25
# Ê sœ
7
6 or s œ 25
6


18. s
#  1 œ 1 or s
#  1 œ 1 Ê s
# œ 2 or s
# œ ! Ê s œ 4 or s œ 0


19. 2  x  2; solution interval (2ß 2)

20. 2 Ÿ x Ÿ 2; solution interval [2ß 2] qqqqñïïïïïïïïñqqqqp x
2 2

21. 3 Ÿ t  1 Ÿ 3 Ê 2 Ÿ t Ÿ 4; solution interval [2ß 4]

22. 1  t  2  1 Ê 3  t  1;
solution interval (3ß 1) qqqqðïïïïïïïïðqqqqp t
3 1

23. %  3y  7  4 Ê 3  3y  11 Ê 1  y  11
3 ;
solution interval ˆ1ß 11 ‰
3


24. 1  2y  5  " Ê 6  2y  4 Ê 3  y  2;
solution interval (3ß 2) qqqqðïïïïïïïïðqqqqp y
3 2

25. 1 Ÿ z
5 1Ÿ1 Ê 0Ÿ z
5 Ÿ 2 Ê 0 Ÿ z Ÿ 10;
solution interval [0ß 10]

26. 2 Ÿ  1 Ÿ 2 Ê 1 Ÿ
3z
#
3z
# Ÿ 3 Ê  32 Ÿ z Ÿ 2;
solution interval  23 ß 2‘ qqqqñïïïïïïïïñqqqqp z
2/3 2

27.  "#  3  "
x  "
# Ê  7#   x"   5# Ê 7
#  "
x  5
#

Ê 2
7 x 2
5 ; solution interval ˆ 27 ß 25 ‰


"
28. 3  2
x 43 Ê 1 2
x ( Ê 1 x
#  7

Ê 2x 2
7 Ê 2
7  x  2; solution interval ˆ 27 ß 2‰ qqqqðïïïïïïïïðqqqqp x
2/7 2

, Section 1.1 Real Numbers and the Real Line 3

29. 2s 4 or 2s 4 Ê s 2 or s Ÿ 2;
solution intervals (_ß 2]  [2ß _)

" "
30. s  3 # or (s  3) # Ê s  5# or s 7
#
Ê s  5# or s Ÿ  7# ;
solution intervals ˆ_ß  7# ‘   5# ß _‰ ïïïïïïñqqqqqqñïïïïïïî s
7/2 5/2

31. 1  x  1 or ("  x)  1 Ê x  0 or x  2
Ê x  0 or x  2; solution intervals (_ß !)  (2ß _)

32. 2  3x  5 or (2  3x)  5 Ê 3x  3 or 3x  7
Ê x  1 or x  73 ;
solution intervals (_ß 1)  ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî x
1 7/3

33. r"
# 1 or  ˆ r# 1 ‰ 1 Ê r1 2 or r  1 Ÿ 2
Ê r 1 or r Ÿ 3; solution intervals (_ß 3]  [1ß _)

34. 3r
5 " 2
5 or  ˆ 3r5  "‰  2
5
Ê 3r
5 
or  3r5   53 Ê r  37 or r  1
7
5
solution intervals (_ß ")  ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî r
1 7/3

35. x#  # Ê kxk  È2 Ê È2  x  È2 ;
solution interval ŠÈ2ß È2‹ qqqqqqðïïïïïïðqqqqqqp x
È # È#


36. 4 Ÿ x# Ê 2 Ÿ kxk Ê x 2 or x Ÿ 2;
solution interval (_ß 2]  [2ß _) ïïïïïïñqqqqqqñïïïïïïî r
2 2

37. 4  x#  9 Ê 2  kxk  3 Ê 2  x  3 or 2  x  3
Ê 2  x  3 or 3  x  2;
solution intervals (3ß 2)  (2ß 3) qqqqðïïïïðqqqqðïïïïðqqqp x
3 2 2 3

" " " " " " " "
38. 9  x#  4 Ê 3  kxk  # Ê 3 x # or 3  x  #
" "
Ê 3 x or  #"  x   3" ;
#
solution intervals ˆ "# ß  3" ‰  ˆ 3" ß #" ‰ qqqqðïïïïðqqqqðïïïïðqqqp x
1/2 1/3 1/3 1/2

39. (x  1)#  4 Ê kx  1k  2 Ê 2  x  1  2
Ê 1  x  3; solution interval ("ß $) qqqqqqðïïïïïïïïðqqqqp x
1 3

40. (x  3)#  # Ê kx  3k  È2
Ê È2  x  3  È2 or 3  È2  x  3  È2 ;
solution interval Š3  È2ß 3  È2‹ qqqqqqðïïïïïïïïðqqqqp x
3  È # 3  È #

, 4 Chapter 1 Preliminaries

Ê ˆx  12 ‰ <
2
41. x#  x  0 Ê x#  x + 1
4 < 1
4
1
4 ʹx  1
2 ¹< 1
2 Ê  12 < x  1
2 < 1
2 Ê 0 < x < 1.
So the solution is the interval (0ß 1)


42. x#  x  2 0 Ê x#  x + 1
4
9
4 Ê ¹x  1
2 ¹ 3
2 Ê x 1
2
3
2 or ˆx  12 ‰ 3
2 Ê x 2 or x Ÿ 1.
The solution interval is (_ß 1]  [2ß _)

43. True if a 0; False if a  0.

44. kx  1k œ 1  x Í k(x  1)k œ 1  x Í 1  x 0 Í xŸ1

45. (1) ka  bk œ (a  b) or ka  bk œ (a  b);
both squared equal (a  b)#
(2) ab Ÿ kabk œ kak kbk
(3) kak œ a or kak œ a, so kak# œ a# ; likewise, kbk# œ b#
(4) x# Ÿ y# implies Èx# Ÿ Èy# or x Ÿ y for all nonnegative real numbers x and y. Let x œ ka  bk and
y œ kak  kbk so that ka  bk# Ÿ akak  kbkb# Ê ka  bk Ÿ kak  kbk .

46. If a 0 and b 0, then ab 0 and kabk œ ab œ kak kbk .
If a  0 and b  0, then ab  0 and kabk œ ab œ (a)(b) œ kak kbk .
If a 0 and b  0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .
If a  0 and b 0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .

47. 3 Ÿ x Ÿ 3 and x   "# Ê  "
#  x Ÿ 3.

48. Graph of kxk  kyk Ÿ 1 is the interior
of “diamond-shaped" region.




49. Let $ be a real number > 0 and f(x) = 2x + 1. Suppose that | x1 | < $ . Then | x1 | < $ Ê 2| x1 | < 2$ Ê
| 2x  # | < 2$ Ê | (2x + 1)  3 | < 2$ Ê | f(x)  f(1) | < 2$

50. Let % > 0 be any positive number and f(x) = 2x + 3. Suppose that | x  0 | < % /2. Then 2| x  0 | < % and
| 2x + 3 3 | < %. But f(x) = 2x + 3 and f(0) = 3. Thus | f(x)  f(0) | < %.

51. Consider: i) a > 0; ii) a < 0; iii) a = 0.
i) For a > 0, | a | œ a by definition. Now, a > 0 Ê a < 0. Let a = b. By definition, | b | œ b. Since b = a,
| a | œ (a) œ a and | a | œ | a | œ a.
ii) For a < 0, | a | œ a. Now, a < 0 Ê a > 0. Let a œ b. By definition, | b | œ b and thus |a| œ a. So again
| a | œ |a|.
iii) By definition | 0 | œ 0 and since 0 œ 0, | 0 | œ 0. Thus, by i), ii), and iii) | a | œ | a | for any real number.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper NurseAdvocate. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €14,60. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€14,60
  • (0)
  Kopen