100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting - leraar wiskunde tweedegraads landelijke kennistoets €16,99
In winkelwagen

Samenvatting

Samenvatting - leraar wiskunde tweedegraads landelijke kennistoets

 0 keer verkocht

Een duidelijke samenvatting van alles wat je moet weten voor de Landelijke kennistoets wiskunde. De samenvatting is gebaseerd op, op de oefentoets op 10voordeleraar, oefentoetsen op Brightspace en mijn aantekeningen.

Voorbeeld 3 van de 19  pagina's

  • 12 september 2024
  • 19
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
semanur130
Landelijke kennistoets formule overzicht
Inhoud
Functies..................................................................................................................................................2
Algemeen............................................................................................................................................2
Goniometrie.......................................................................................................................................2
Logaritmes..........................................................................................................................................4
Inverse functies...................................................................................................................................5
Exponentiële functies.........................................................................................................................5
Dynamische modellen............................................................................................................................6
Statistiek en Combinatoriek....................................................................................................................7
Statistiek.............................................................................................................................................7
Combinatoriek....................................................................................................................................7
Analytische meetkunde..........................................................................................................................9
Integreren.............................................................................................................................................10
Getallen................................................................................................................................................11
Getaltheorie.....................................................................................................................................11
Complexe getallen............................................................................................................................12
Aanschouwelijke meetkunde................................................................................................................13
Synthetische meetkunde......................................................................................................................14
Kansverdelingen...................................................................................................................................15
Differentiëren.......................................................................................................................................16
Problemen en Bewijzen........................................................................................................................17
Matrices en Grafen...............................................................................................................................18

,Functies
Algemeen
Functies met de bijbehorende inverse, afgeleide en primitieve

Functie f (x) Inverse f −1 (x) Afgeleide f ’ ( x ) Primitieve ∫ f ( x ) dx
1 −¿ 0 x +c
x x 1 1 2
x +c
2
x2 √x 2x 1 3
x +c
3
√x x2 1 2 2
3
x +c
2√ x 3
1 1 −1 ln ( x ) +1
x x x2
xn 1
n x n−1 nn +1
xn +c
n+1
e
x
ln ( x ) e
x x
e +c
a
x
ln ( x ) x
a ln ( a ) ax
+c
ln ( a ) ln ( a )
ln ( x ) ex 1 xln ( x ) +c
x
sin ( x ) arcsin ( x ) oftewel sin−1 ( x ) cos ( x ) −cos ( x ) +c
cos ( x ) arccos ( x ) oftewel cos−1 ( x ) −sin ⁡( x) sin ( x ) +c
tan ( x ) arctan (x) ofterwel tan −1 (x ) 1+ tan 2 (x) −ln|cos ( x )|+ c
arcsin ( x ) sin ⁡( x) 1 −¿
√1−x2
arccos ( x ) cos ( x ) −1 −¿
√1−x 2

arctan (x) tan ( x ) 1 −¿
1+ x2
f ( g ( x )) g
−1
( f −1 ( x ) ) f ( g ( x )) g ( x )
' '
−¿
f ( x ) + g(x ) −¿ ' '
f ( x )+ g ( x ) ∫ f ( x ) dx +∫ g ( x ) dx

Het vinden van oplossingen van vergelijkingen met absoluut tekens

Goniometrie
De periode van een trigonometrische functie bepalen:


 Er geldt altijd: periode=
|a|
o Hierbij is a het getal voor de variabele. Dit is bruikbaar voor zowel de sinus als voor
de cosinus

,  Als het een samengestelde functie is ga je opzoek naar de KGV (kleinste gemeenschappelijke
veelvoud)
o Dit doe je door ze los van elkaar te berekenen en dan de KGV te vinden.



Exacte waardentabel voor de sinus, cosinus en de tangens

Hoek 0 1 1 1 1
π π π π
6 4 3 2
Sin 0 1 1 1 1
√2 √3
2 2 2
Cos 1 1 1 1 0
√3 √2
2 2 2
Tan 0 1
√3
1 √3 −¿
3


Rekenregels sinus-formules

 sin ( x )=sin ( x +2 π ) =sin ⁡( π −x)
 −sin ( x )=sin ( x + π )=sin ⁡(−x)

(
sin ( x )=cos π−x
1
2 )
 sin ( 2 x ) =2 sin ( x ) cos ( x )
2 2
 sin ( x )=1−cos ( x)
o Komt uit deze cos 2 ( x ) +sin2 ( x )=1

Rekenregels cosinus formules

 cos ( x )=cos ( x+ 2 π )=cos (−x )
 −cos ( x )=cos ( x+ π )=cos ( x−π )

( 1
) (
cos ( x )=sin π−x =sin π + x
2
1
2 )
2 2 2
 cos ( 2 x )=2 cos ( x )−1=1−2sin ( x )=cos ( x ) −sin ( x )
 cos 2 ( x )=1−sin2 ( x)
o Komt uit deze cos 2 ( x ) +sin2 ( x )=1

Rekenregels tangens formules

 tan ( x )=tan ( x+ 2 π )=tan ( x+ π )
 −tan ( x )=tan (−x )=tan ( π −x )
1
 tan ( x )=cot ⁡( π−x )
2
sin ( x )
 tan ( x )=
cos ⁡(x )
Sinus, cosinus en tangensvergelijkingen oplossen

 sin ( x )=sin ( y )
o x= y +2 kπ ∨ x=π − y +2 kπ

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper semanur130. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €16,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65863 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€16,99
  • (0)
In winkelwagen
Toegevoegd