100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
Eerder door jou gezocht
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907€13,20
In winkelwagen
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907
17 keer bekeken 0 keer verkocht
Vak
Modern Physics With Modern Computational Methods
Instelling
Modern Physics With Modern Computational Methods
Boek
Modern Physics with Modern Computational Methods
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest Edition Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3...
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest Edition
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest
Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered Complete
Alles voor dit studieboek
(9)
Geschreven voor
Modern Physics With Modern Computational Methods
Modern Physics With Modern Computational Methods
Verkoper
Volgen
reagandave
Ontvangen beoordelingen
Voorbeeld van de inhoud
SOLUTION MANUAL Modern Physics with Modern
Computational Methods: for Scientists and
Engineers 3rd Edition by Morrison Chapters 1- 15
,Table of contents
1. The Wave-Particle Duality
2. The Schrödinger Wave Equation
3. Operators and Waves
4. The Hydrogen Atom
5. Many-Electron Atoms
6. The Emergence of Masers and Lasers
7. Diatomic Molecules
8. Statistical Physics
9. Electronic Structure of Solids
10. Charge Carriers in Semiconductors
11. Semiconductor Lasers
12. The Special Theory of Relativity
13. The Relativistic Wave Equations and General Relativity
14. Particle Physics
15. Nuclear Physics
,1
The Wave-Particle Duality - Solutions
1. The energy of photons in terms of the wavelength of light is
given by Eq. (1.5). Following Example 1.1 and substituting λ =
200 eV gives:
hc 1240 eV · nm
= = 6.2 eV
Ephoton = λ 200 nm
2. The energy of the beam each second is:
power 100 W
= = 100 J
Etotal = time 1s
The number of photons comes from the total energy divided
by the energy of each photon (see Problem 1). The photon’s
energy must be converted to Joules using the constant 1.602 ×
10−19 J/eV , see Example 1.5. The result is:
N = Etotal = 100 J = 1.01 × 1020
photons
Epho
ton 9.93 × 10−19
for the number of photons striking the surface each second.
3.We are given the power of the laser in milliwatts, where 1
mW = 10−3 W . The power may be expressed as: 1 W = 1 J/s.
Following Example 1.1, the energy of a single photon is:
1240 eV · nm
hc = 1.960 eV
Ephoton = 632.8 nm
=
λ
We now convert to SI units (see Example 1.5):
1.960 eV × 1.602 × 10−19 J/eV = 3.14 × 10−19 J
Following the same procedure as Problem 2:
1 × 10−3 J/s 15 photons
Rate of emission = = 3.19 × 10
3.14 × 10−19 J/photon s
, 2
4. The maximum kinetic energy of photoelectrons is found
using Eq. (1.6) and the work functions, W, of the metals are
given in Table 1.1. Following Problem 1, Ephoton = hc/λ = 6.20
eV . For part (a), Na has W = 2.28 eV :
(KE)max = 6.20 eV − 2.28 eV = 3.92 eV
Similarly, for Al metal in part (b), W = 4.08 eV giving (KE)max = 2.12 eV
and for Ag metal in part (c), W = 4.73 eV , giving (KE)max = 1.47 eV .
5.This problem again concerns the photoelectric effect. As in
Problem 4, we use Eq. (1.6):
hc
(KE)max = −
Wλ
where W is the work function of the material and the term hc/λ
describes the energy of the incoming photons. Solving for the
latter:
hc
= (KE)max + W = 2.3 eV + 0.9 eV = 3.2 eV
λ
Solving Eq. (1.5) for the wavelength:
1240 eV · nm
λ= = 387.5 nm
3.2
eV
6.A potential energy of 0.72 eV is needed to stop the flow of
electrons. Hence, (KE)max of the photoelectrons can be no more
than 0.72 eV. Solving Eq. (1.6) for the work function:
hc 1240 eV ·
W = — (KE)max — 0.72 eV = 1.98 eV
λ nm
=
460 nm
7. Reversing the procedure from Problem 6, we start with Eq. (1.6):
hc 1240 eV ·
−W
(KE)max = nm — 1.98 eV = 3.19 eV
=
λ
240 nm
Hence, a stopping potential of 3.19 eV prohibits the electrons
from reaching the anode.
8. Just at threshold, the kinetic energy of the electron is
zero. Setting (KE)max = 0 in Eq. (1.6),
hc 360 nm
W = = 1240 eV ·
λ0 nm
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper reagandave. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €13,20. Je zit daarna nergens aan vast.