100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY MATHEMATICS 2ND EDITION BY MARK V. LAWSON SOLUTIONS MANUAL €20,50   In winkelwagen

Tentamen (uitwerkingen)

ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY MATHEMATICS 2ND EDITION BY MARK V. LAWSON SOLUTIONS MANUAL

 8 keer bekeken  0 keer verkocht
  • Vak
  • ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY
  • Instelling
  • ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY
  • Boek

SOLUTIONS MANUAL Algebra & Geometry: An Introduction to University Mathematics 2nd Edition by Mark Lawson TABLE OF CONTENTS Chapter 1 The Nature of Mathematics Chapter 2 Proofs Chapter 3 Foundations Chapter 4 Algebra Redux Chapter 5 Number Theory Chapter 6 Complex Numbers Chapter 7 Poly...

[Meer zien]

Voorbeeld 4 van de 78  pagina's

  • 24 september 2024
  • 78
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY
  • ALGEBRA AND GEOMETRY AN INTRODUCTION TO UNIVERSITY
avatar-seller
, SOLUTIONS MANUAL
Algebra & Geometry: An Introduction to
University Mathematics 2nd Edition by Mark
Lawson

TABLE OF CONTENTS

Chapter 1 The Nature of Mathematics

Chapter 2 Proofs

Chapter 3 Foundations

Chapter 4 Algebra Redux

Chapter 5 Number Theory

Chapter 6 Complex Numbers

Chapter 7 Polynomials

Chapter 8 Matrices

Chapter 9 Vectors

Chapter 10 The Principal Axes Theorem

Chapter 11 What are the Real Numbers?

, CHAPTER 2

Proofs


Exercises 2.3
1. (a) C was a knight. The argument runs as follows. If you ask a knight what
he is he will say he is a knight. If you ask a knave what he is he is obliged
to lie and so also say that he is a knight. Thus no one on this island can
say they are a knave. This means that B is a knave. Hence C was correct
in saying that B lies and so C was a knight.
(b) A is a knave, B a knight and C a knave. The argument runs as follows. If
all three were knaves then C would be telling the truth which contradicts
the fact that he is a knave. Thus at least one of the three is a knight and
at most two are knights. It follows that C is a knave. Suppose that there
were exactly two knights. Then both A and B would be knights but they
contradict each other. It follows that exactly one of them is a knight.
Hence A is knave and B is a knight.
2. Sam drinks water and Mary owns the aardvark. The following table shows all
the information you should have deduced.

1 2 3 4 5
House Yellow Blue Red White Green
Pet Fox Horse Snails Dog Aardvark
Name Sam Tina Sarah Charles Mary
Drink Water Tea Milk Orange juice Coffee
Car Bentley Chevy Oldsmobile Lotus Porsche
The starting point is the following table.

1 2 3 4 5
House
Pet
Name
Drink
Car

1




SOURCE: Browsegrades.net

, 2 □ Solutions to Algebra & Geometry: Second Edition

Using clues (h), (i) and (n), we can make the following entries in the table.

1 2 3 4 5
House Blue
Pet
Name Sam
Drink Milk
Car

There are a number of different routes from here. I shall just give some exam-
ples of how you can reason. Clue (a) tells us that Sarah lives in the red house.
Now she cannot live in the first house, because Sam lives there, and she cannot
live in the second house because that is blue. We are therefore left with the
following which summarizes all the possibilities so far.

1 2 3 4 5
House Yellow? White? Green? Blue Red? Red? Red?
Pet
Name Sam Sarah? Sarah? Sarah?
Drink Milk
Car

Clue (b) tells us that Charles owns the dog. It follows that Sam cannot own the
dog. We are therefore left with the following possibilities.


1 2 3 4 5
House Yellow? White? Green? Blue Red? Red? Red?
Pet Fox? Horse? Snails? Aardvark?
Name Sam Sarah? Sarah? Sarah?
Drink Milk
Car

Both Questions 1 and 2 demonstrate some of the logic needed in mathematics.

3. I shall prove that the sum of an odd number and an even number is odd. The
other cases are proved similarly. Let m be even and n be odd. Then m = 2r and
n = 2s + 1 for some integers r and s. Thus m + n = 2r + 2s + 1 = 2(s + r) + 1.
Thus m + n is odd.
4. Draw a diagonal across the quadrilateral dividing the figure into two triangles.
The sum of the interior angles of the figure is equal to the sum of the angles in
the two triangles. This is 360◦.
√ √
5. (a) Two applications of Pythagoras’ theorem give 22 + 32 + 72 = 62.




SOURCE: Browsegrades.net

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Succeed. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €20,50. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75632 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€20,50
  • (0)
  Kopen