100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
College aantekeningen incl. samenvatting Quantum Mechanica 2 €10,49
In winkelwagen

College aantekeningen

College aantekeningen incl. samenvatting Quantum Mechanica 2

 16 keer bekeken  0 keer verkocht

Uitgebreide college aantekeningen incl. zeer uitgebreide samenvatting van het vak Quantum Mechanica 2, gegeven door Juan Rojo in het 2e jaar van de bachelor Natuur-en Sterrenkunde aan de UvA/VU. De samenvattingen heb ik gemaakt voor de wekelijkse toetsjes die destijds plaatsvonden voor een bonus pu...

[Meer zien]

Voorbeeld 4 van de 46  pagina's

  • 26 september 2024
  • 46
  • 2021/2022
  • College aantekeningen
  • Dr. juan rojo
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
sterrehoefs
Quantum Mechanica 2

, Quantum Mechanics
Hoorcollege 1 - 7-2-22


Formalisms of QM



Schrödinger eg : MIX) =
-chVYIx = E



Heisenberg's uncertainty principle : AxAps


Hilbert space



The Cartesian space in 3 dimensions : #3 ; Fetth
↳ You can write
any vector in 3 dimensions as a sum /linear combination) : = an + Gratis
By using a matrix
you can transform a vector into another rector




The 3 vectors form a basis : [ ,
2 , s)

By choosing a ,
92 and as
you can recreate
any element in the
vector space


* Basisvectors orthonormal which that the scalar product (inproduct) Vi
Sij the scalar product is either 7 or 0
Uj
are means · = >
-

.
,




To describe the Hilbert space , we need state rectors > (x)



We call 1> a ket > Dirac notation



↑x E H (Hilbert spaces
↳> vector space
complex




All info about a quantumstate is incorporated into the State Vector (x)



State vectors are transformed by linear
operators

dimension of Hilbert space
al ↑
R
A2
Dirac notation &
ai /Xi]
(x :
: =



i = 1 ↳ basiselement
basis an
indepen -
cent
this expression makes it more explicit that
you're using a
choice of basis
Specific
J
n dit K
dimensional with
Ibasis dependent)



We've seen in linear that if elements of the Cartesian Vector space that multiplication by and
algebra two recoors are ,
some coefficients adding the results ,
the result will also be an element of the same vector space



En M

(a + bez) ERM a ,
De R


The holds in the Hilbert space
same
thing

(x) , 19)


(x) = a(x) + biB) -H a, be
↳ a and b are now complex numbers because the
Hilbert space is a
complex vector space .




analogue with the Schrodinger cat



Both the Hilbert
States are part of space , so :




1 alive) -H : Idead H



but also : lalive) + Idead) -H




Electron Spin


Spin up ↑ and spin down I
t -




We have 2 dimensions , therefore we need 2 basisvectors



The dimensions of the Hilbert the number of independent basisvectors
space are




a choice of basisrecorcould be : 1+ =
(b) ; 1- (i)

any (x)EH
element can be written as the linear superposition of the basiselements :




(x) =
c+ |+ 7 + c 1 -
> = c+ (b) + c (i) =
(c)
↳ This is the most general state that this
quantum system can have




J T measure the
-
spin of the
system , you will
only find 2 possibilities <
Spin up or spin down

↳ a of this will return two possible outcomes
measurement system
However, this does not mean states of 1) exist there is an infinite number of quantum States
only two >
-




↳ choice of coefficients
every different is a different quantum State

,Inner/Scalar product in Hilbert
Space

The scalar product reviewed :


E R


a =
(91 ,
92 , 93) : 5 = ( bi , ba , b3)



Scalar product : = Saibi = tâllcos
↳> parallel : /âlI
perpendicular : o




Scalar product in Hilbert Space :


# In-dim I .




=adi b
1) 13




The innerproduct is
given by <x1B) (t) :



↳ "Draket"
(7 = "Ket"



Bl =
"bra"


If Space (1x)tH) 1H * )
(x) is an element of the Hilbert
,
then each
corresponding 'bra-vector is not an element of the Hilbert space ,
but the dual Hilbert
space




the Hilbert Vector
Transforming from space to the dual Hilbert space
al

A2
(ai*, *,
*
IX) =
> (x1 =
aa an (
an
...




Ket > bra




So to ket to bra is to make the column a row and then take the
go from complex conjugate of each element



In different notation




(x)
Bai) with SIN] as basis of




(xl= Bi *
(il with Mil as basis of


Example of braket


(18) =
19. *, 92 *, ...,
an
*
)
(b)
Physical interpretation


(1B) is a measure of overlap in the Hilbert space


= (b) : Ec =
(9) >
-


plotting these vectors
you see
they are
perpendicular so
they have no overlap

= 16) : va =
(6) >
the recoors overlap :


So what this means is when the innerproduct is zero , there is no overlap ,
but if it's not zero there is some overlap


(x1B) = 0


↳> no overlap ; Vectors are
orthogonal




Using normalized State vectors


We know that 15(X)12 is the
a measure of the probability of finding particle in a
space

The idea is that when we take innerproducts of a state vector we can
assign them a ~
interpretation :




(x(x) = 17 H




Now, back to the electron and we saw that (x) is a linear combination of elements
going spin ,




Since the basis (xIB) of
is
orthogonal moet er
gelden dat 0 in dit
geval ( + 1 -7 0
= =
: :
,




We have two elements of this rector space :
1x
=
11 + > -
it -) = (1)
1p) = be 1 + + b21 -
3 =

(3)
What ?
are the values of bi , be such that (xIB) = 0




First , compute the innerproduct :
(x1B) = ( .
+ i)(b) = 0


complex


↓ (b) conjuga
te




by = -

ibz

, the this value is , the smaller the
Using Kronecker delta
& larger overlap
S
(4j(4)
=
(4
j /ci) I
Sij
linearalgebra Sij
↳ Kronecker delta




* a basis should be orthonormal


Here ,
(j
= <
4j14)
In the limit of complete overlap :


1) Ci(i) then
Cj < and Ci = 0
forif
=




When can compute cj by taking the innerproduct of one of the basis rectors with the
big state vector



(j (
4j(4)
=



N


IN: > <Mil =
1 is an
operator >
-


something that acts on a state rector and
gives me another state vector where both state vectors
belong do the same Hilbert space
i =1
↳ 814) =
153 Where 14) , 153 &H


Identity operator :
"14 :>< Mi =
1

i =1


3 =
C
Xi (4)
14

dummy
incét


Hilbert space in finite dimensions vs infinite dimensions


In the Hilbert dimensions we need an infinite number of basis elements
space of infinite


(dx4(x)(x)
S
(4) =


continuous
"Wave' particle's
&
I
element of
function Position
Hilbert




1y) =



i
"Ciltis
=
1
3 discrete (finite dimensions of Hilbert Space)


So, for the wave function
the infinite dimensions plays the role of the coefficient ci




( (dxx2(x)(x) (dxdxy, (x(x2(x) .x(y S dxy, *(x)X2(x)] overlap integral
*
(4. 142) = ax'4, (x)(x) = =




an infinite dimensions we use S(X'-X) (Dirac delta)


Discrete <4: /Kronecker deltal
:
14j) =
Sij

Continuous :< X11x) =
SIX-X) (Dirac deltal




(4143 =
( *
a xy (X)X(x) =

( d x(4(x) = 1 (because the warefunction in normalized(




M



Finite Hilbert space : 141) =

= =,
jic 141)

Infinite Hilbert space : 141) =

( dx + (x) (x)
,




* Table in the lecture notes to determine if finite of infinite

Note : Spatial dimension o Hilbert dimension




State rectors and operators

= (a) : m
=InS
m == (b) : Ben
Operator :8 applied to a staterector to make another State vector



& 141) =
152) ; 14 · 7, 1427 H


Inner product : 14 . 3
,
122) > C



Operator : 14,7 - 1427


In the finite dimensional Hilbers space : 8141) =
142)


1413
ailtibil
814 3
=(
--




,
=
142) =
:


·



Operators are basis independent ,
but the representations do depend on the basis


Action of 8 on 14) -H is determined
by 81 asiselements
·

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sterrehoefs. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50064 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,49
  • (0)
In winkelwagen
Toegevoegd