100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting - Financial Econometrics (6414M0007Y) €6,49   In winkelwagen

Samenvatting

Samenvatting - Financial Econometrics (6414M0007Y)

 13 keer bekeken  1 keer verkocht

Uitgebreide samenvatting van het vak Financial Econometrics.

Voorbeeld 3 van de 24  pagina's

  • 27 september 2024
  • 24
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
maaikekoens
Univariate linear time series
Time serie is a sequential set of observations on variable x, where t represents time Exa =..., Xe-2 ,
Xe ,
Xe ,
Xe +, Xe +, ...




Financial returns
-
One-period (simple) return PA Pe DA Pt-1 Pt Pt-1 DE
note
PA
-

+
-
- - 1




regular (if dividends are included
: RE =
Pt-1 Rt =
Pt -1 =
Pe -
1
+
Pt -1
) RE
returns
log-return =log) Rt) leg (p) :

log -log Pr , +
= =

pr -pe
= Pr =

spe Pt
price
-
Multi-period return (sum of one-period returns), use log-returns k - 1
dividens
De


re[k] =
pt
-



pe m
=
(pt -


pt
1) -



(pt ps k)
- =
ra +
(pt 1
-



pe
-z) +
(pec -



pe
-b) =
ra + re + ...
grej



#




Using these concepts of time series and financial returns, we get financial time series
example
Prices Log of prices Log of return




properties financial time series
-
stationarity
strict stationarity: distribution of (xh + 1,
, . . .,
Xer +
1) does not depend on t for any integers Et , ....
Ab and t


distribution does not change when we shift, hence change t
7




weak stationarity
8
constant mean, independent of time: E(xt) M =




O
constant variance, independent of time: Var(xe) G =




El(x m)(x )]
constant autocovariance, independent of time: (x
e)
O

for( j
: - -
=
,




-
autocorrelation function ACF: pl =
core (xt ,
xx e) =
Var(xe) =


yo
D E(ae) Var(ae) Cov(at are)
example stationary process, White Noise: = 0
,
=
8, ,
=
o




models
d
Linear process: m j +jatj m Xt =
+ = + Nodt + 4 , at - ....




Pit
stationary with mean M , variance z4, and ACF Al 204j
7 =




Wold's decomposition theory states that any stationary proces [xe] can be written as sum of linear and
deterministic processes Ewa]
We could also at a lag operator B, defined by Bxt =
XA -
, hence Baxt =
Xe b -




I

, N




Then we could write the linear process as xt =

m
+ x(B) at =

m
+ 4oat + 4 , at - ...
+ That - b



- +(B) =
j4 B ,



8
Autoregressive process
· AR( ) ,
:
xt =
00 + Ext -1 + at

①o Ga
7
stationary if 10 14 , then E(x) A Var(xz) -0 ,
yo
= =

m
=
. =
1 -

, 1




proof 00 Xt = + 6 , Xt -
1 + at




(1 -
d, B) xt =
00 + at




x =
,)1 qB)" (d at)
-
+ =
j(q B)" (4,
+ a) =
Tod, (0 +
atj)
-
d(B) =
1 - d B ,
=
0




&
AR( ) 4
5
ACF ,
stationary 1
is linear process with exponentially decaying weights =
6 ,
, we find =

pe
=
0


AR(p)
·
:
xt = do + d , xt -
1 + +
6pxt -


p
+ at

example
...




Et
ye
0
3yt +
=
0
1yt
. - + .
-
2


>

stationary if all zj lie outside unit circle: ye
-
0 .


3yt -
1
-
0 .



1yt 2
=
Et




xt- t
proof X- ·
,

(1 -
0 .
3) -


o .,
(2) ye =
Es




↓ (2) 122
for =
1 -
0 32.
-
0 .
= 0 2 = -
522 = 2



((z) =
1 -
0 , 2 ....
-

pzP = 0 #
as both lie outside unit circle, stationary

&
ACF can not be determined, but we can use partial autocorrelation function (PACF), for
AR(p), the PACF has cut-off point at l p =




Q

Moving Average model
·
MA(1) :
x =
20 + at -
G at -1
,




7

stationary for all parameter values with M ja) +i)
jo er =
=
1 +
,




-- for hence ACF is cut-off at l peo
>
,
p 1
. =
,




>
invertible if 18 14 .
, a model is invertible if it can be expressed as AR(n)

proof XA =
at + fat -
1




at =
xx
-
G , at -
1
=
Xt - 0(xt - - at z) =... =
x -
Ext + + 0xx 2 - 83x 3 + ...




D




( f)" AR(g) 101
= -




i =
-
+ a =

only works as
>
PACF decays exponentially
MA(q)
·
at-Gat- . . .
xt co
gatg
-
: = +




>
ACF has cut-off point at l g =




invertible if all roots zj lie outside unit circle: Fiat -
at
gatq
7
Xt e0
-
=
+ -
-...




xe =
e +
1) -

f B ,
-




...
fqB) at ,




Xe = e + (B) at

6(z) =
1
-
12 ...
-



gz = o



&

PACF decays exponentially

, &
Mixed autoregressive-moving average model
ARMA(p g)
·
d dx ApX - G,
,
EqAq :
xt = + + + ... +
-p
+ at ....


①o O(z)
b(z) y(B)at (2)
stationary if all roots of
7
lie outside unit circle, implying xx =
m
+
,
m
=



0)) ,
=
q(z)
((z)
3
invertible if all roots of f(z) lie outside unit circle, yielding # (B) x1 = co + at
,
20 =
0(1) ,
(2) =
f(z)


7
ACF decays exponentially
>
PACF decays exponentially
&
ARMA(p 1)
To avoid identification problems, reduce model to -1 ,
g
-




AR(p) MA(g) ARMA(p ,
g)
AlF deceases geometrically
,

pl I 1

for large l
11

decreases geometrically 0 for 2q



PACF ,
60 I I deceases geometrically
for large l
0 for expo decreases geometrically


8

Integrated processes: many time series are non-stationary, but may have stationary first differences

X-X
example is non-stationary, but is stationary, now 1( ) Xe -




is integrated of order d ( = ) if
Xt =
Xt -
1 + Et ,




hence
7 Xt
stationary vs integrated processes

now we applicate this to the ARMA(p g) model: ,
:
Xt =
00 + b , Xt -
1 + ...
+
6pXt p
+ at -

, at - - ...
-



Agat-q :
ApXt 0 Eat
xx d , Xt = + at ....
OgAq
-



p
-
-
....




((B)xt = 6 f(B) at
when this is non-stationary we could use differences
+




( (B)axx =
00 + f(B) at
(with roots ↓ (B) and &(B) outside unit circle)
>
autoregressive-integrated-moving average, ARIMA(p d g) , ,




example random walk (with drift if MF0 ) : Xt =

M
+ Xt -
1 + at



E(x0) Var(x)
xo
Mt aj this is non-stationary as Mt Var(xe) ot
= + = +
m
+ = +
,




but we can integrate to make stationary: AXt =

M
+ at




Suppose we have a time series, how do we then select the appropriate ARIMA model?
>
Box-Jenkins procedure: consists of servers steps
1



Identification /model selection: make initial guess of p, d and q, based on graphs and sample ACF and PACF

L
remember
sample ACF je jo
je i (x x)(xx z)
(xe )
Leung-Box Q-statistic
test
Hope
=


Haiplo Q(m) T(T 2) x (m)
=
+,
-




-
*
e -




3 =
0
,
=
+
<




~

sample PACF Ee] : obtain with OLS on Xt =
00 ,
2 +
d1 ,
2xt - ...
+ PhlXt 1 + elt




:
...
& l

or 2 .
l L




: i
= ...
I




Fre

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maaikekoens. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60904 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  1x  verkocht
  • (0)
  Kopen