100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting - Stochastic Calculus (6414M0013Y) €6,49   In winkelwagen

Samenvatting

Samenvatting - Stochastic Calculus (6414M0013Y)

 10 keer bekeken  1 keer verkocht

Uitgebreide samenvatting van het vak Stochastic Calculus.

Voorbeeld 4 van de 36  pagina's

  • 27 september 2024
  • 36
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
maaikekoens
Derivative pricing in discrete time
Definitions & notations
-
Derivative: financial product defined from another underlying asset
· S
: price of underlying stock
·
: price of derivative (call)
C



te [0 T] : time ,




payoff: b(Si) b(S 1c[o ])
-

or e+ =
b =
+
, ,+




We will look at 3 main approaches to determine the price Ct



Replication
I




Risk-neutral valuation
2




3
Deflator valuation
But we first exploit some useful theory

The binary one-period model
Br S+ (u)
erT P



Bank Bo
Stock So
this are the underlying assets
ert 1-
p

Br S + (d)



example Bo =
1
,
e =
1 .
1
,
So =
100 ,
U =
1 .
25
,
d =
0 .
&
,
p
= 0 .
8



1 .
1 125 =
Sou
X 1.1
XU




Bank ↑
Stock 100

xd
X 1 . 1



1 . 80 = God




For these underlying assets we can work backwards when we know the value at t = 1, using discount factor erT

e E (S ] ( p))
*T *

So = e (Sou +p +
=
+ Sod + -




N



How can we now price the derivative using these underlying assets, Co ?
f(5 )
We can first calculate the payoff of the derivative using the underlying asset C+ = +




C+ (u) = &(Sou) =
e




lo


e+ (d) =
b(Sod) =
red




example max[Sou-k o],
=
max
[125 -
100
,
03 =
25




Payoff European call option & (S ) +
= max[S +
-

k ,
03 &



take strike price K = 100 max [Sod-k 03
,
=
max 200 -
100
,
03 =
0

, As said before there are three methods to derive this , let's look at the first one Co


I
Replication: find a portfolio strategy investing in the stock and a risk-free asset that matches the derivative
price at each point
notation




3
Portfolio:
E 0 = (4 0 , .
- 1)

-1 derivative (sell one unit of derivative)
7


&
Price Po 8 =
4 Bo + $50 -
Co

M



shares in stocks
>
R


N




invested in bonds P (w) (w)
>

Payoffs +
.
0 =
4B + + 03 + -
er



Price vector Pa ( (a)
~
=
,
St ,




An arbitrage is a portfolio with either
i) (w)
A negative price and a non-negative payoff in both states : 0 .
Po o
,
0 .
P+ Lo



ii) (c) 20 PLA (n) o]
A non-positive price and a non-negative payoff, positive in at least one state : 0 .

PoEo ,
0 .
P
+
,
.
P
+
< > o




N




We rule out arbitrage opportunities and impose law of one price: a portfolio with payoff zero has price zero:

S
& S (u)


S (d)
yB

+B
&
+




+
e (u)


(d)
hence we can find 0 4
+ + =




and use these to solve
+
+
=
+




C+ So ↑Bo hence find
.




&o = + Co



note the risky position St hedges the payoff, so that Ve-0SA BE is risk-free again
- =
4




28at
=at
i
-



N
note u =
d =
=
e




We can rewrite this to explicit solutions:

E
en-ed
*
↓ Son 4 Bo
↑ Boe +
O =

(= hedge ratio
en
:
Son-Sod
edu-end
A
) Co =
050
en-ed
+



edu-end
"T rT

& Sod ↓Boe"
-




↓ Bo


+
+ =
ed =
e u -
d u -
d


(
u - eT

ed u - d
, ,


g1-q

This q is the risk-neutral probability,
this brings us to the second method
&



2
Risk-neutral valuation: construct a risk neutral probability measure Q under which the derivative price
equals the Q-expected discounted payoffs
e T(eu (1 g)) e z(e ]
Hence we find g
2 = + + ed + -
=
+




note we do not use the p probabilities as this is irrelevant for Co




We could also exploit this idea to a market with N assets and n states, the risk-neutral measure can be
uniquely determined if N = n




Complete market: any derivative with payoff depending on underlying assets can be replicated
>




Incomplete markets: no-arbitrage still may provide bounds on derivate prices, which price is realized
depends on market risk preferences
7
this happens when , hence more states then underlying assetsn2 N

, Binomial tree
The binary model is not rich enough in practice, we need more states and time periods, we introduce the
binomial tree: series of binary trees
T


example N = 2 T note stock prices are recombinant, Sc(nd) Sc(du), derivative price tree might be not
at = =




So un en (nu)
W W



Son & (u)
U U
d d


Stocks So So du (nd) (du)
U
Soud :

Call Co

d
U
en :
en

d


2
God C . (d)
At

d d

Sodd en(dd)




3
Using these binomial tree, we can calculate Co using backward pricing
step 1: calculate the payoffs at time N f (Sn- u) or &(Swd) :
,




step 2: using these payoffs and q, calculate en-1 e E [en /Sn ] et[ein /Si]
*
=
-1
In summary, li =




ere[en- /Sn-2]
r(N i) at
Ea[enISi]
-




step 3: repeat
-




&w - z =

or Ci = e




step 4: work backwards until Co




When we know all the derivative values, we also know all the hedging values
Miti (u) -
Citi (d) u(i +,
(d) -
dCi +
(u)


Di + 1
=
Sin-Sid Nit Bi ,
=
grat u -
d


This sequence (i + 1
,
Pi +
1) is a dynamic portfolio strategy with:
#




I




P




intermezzo: discrete-time martingales
definitions
·
probability space (r .
F ,
P)
>
probability measure I : gives probability to events in F ex. P(A) =
cp(i p)
-




collection of events A ex. F contains A End Y and A Sun da]
-field F : -l :

,
du =
,




sample space : set of all possible outcomes 7
ex. Enu dd] R wel 2 :
,
ud ,
du ,




random variable
X , assigns real numbers to outcomes
R : 1 >




R , random variable with extra dimension
stochastic variable : 2xT
~ >




example the variable Xt , takes 3 different values at t =
0 .
6



each corresponds to one sample path/trajectory W




Xe(w) is a collection of random variables, defined in one common probability space

, Y




the --field lists all events that might happen to X
F


7
we can define smaller O-fields Fr , collecting events that might have happened before n
>
filtration · [0 23 .
:
Fo F E .
. . .
[Fr ( : 5)

example 1 : Sunu ,
nud ,
udu ,
udd ,
dun ,
dud ,
du ,
Add 3

A: Eunu ,
und ,
uda ,
add 3 cr



F. : [0 ,
r ,
A , A ,
3]

In X" ((x3) [w X(w) Ye Fr( (B) (w X(w) BYE
·
measurability: = = = x
for continuous X = : = Fr


when this holds for all n, then Xr is adapted to the filtration Fr
&




I




ex. -fields Fr is the information set then the conditions 'X is G-measurable says 'the information set G I



S




contains X , and HEG is interpreted as 'all information in I is contained in G

important properties expected values
remember E(X) x(wi)p(wi) E(X1B) = X(wi) P(wilB) :
·




for finite field GEF E(XIG) (w) E(X/aw) An MStieg
· -
: = =
: we Ail

·
E(X1g) : X
if X is G-measurable
· E(X 150) : E(X)

·
E(XY(g) =

XE(y(g) if X
is G-measurable
·
EZE(Xig)] :
E(X)

5
E[E(X(g)(2] :
E(X (2) 288 = 5
(tower property)
>

ex. ELE(XIFn)IFn] E(XIFn) En E(X(fn) E(XIXo Xn)
if is generated by X, then
:


,
=
,
X , .
. .
.,




martingales
Xn
is a martingale with respect to In and I if: A stochastic process is said to have the


]
Xr
is adapted to In each Xn is measurable with respect to ,
= martingale property if, at any given time, the
expected value of the future values of the
-EP((Xn)) < process, conditional on the information
available up to the present time, is equal to
3E(Xn + 1 15n) : Xn
the current value.
example E(Xn + 1
15n) =
ELE(X1fn 1) (5n] +
:
E[X1Fn] :
Xn




martingale transform
when Xn is a (P Fn) -martingale, and .
on
is previsable ( On is Fn-measurable) . then In = 20 + "Pin (Xin -Xi) is also a
(P Fr) martingale
.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maaikekoens. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60904 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  1x  verkocht
  • (0)
  Kopen