100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Strategy Analytics €6,99   In winkelwagen

Samenvatting

Summary Strategy Analytics

1 beoordeling
 177 keer bekeken  9 keer verkocht

Summary of all the lectures WITH additional information from the book added to each concept. The most complete summary you will get that helps you receiving a high grade

Voorbeeld 4 van de 43  pagina's

  • Ja
  • 16 januari 2020
  • 43
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (4)

1  beoordeling

review-writer-avatar

Door: brandonsmulders2302 • 3 jaar geleden

avatar-seller
danterodrigo
Strategy analytics summary
Fundamental concepts:

Data science
= involves principles processes and techniques for understanding phenomena via the
(automated) analysis of data

Data-driven decision-making (DDD)
=basing decisions on the analysis of data, rather than purely on intuition

Big Data
=simple, very large dataset, but with 3 characteristics
- Volume: the quantity the data
- Variety: the type and nature of the data
- Velocity: the speed at which the data is generated and processed




Data mining
=the extraction of knowledge from data, via technologies that incorporate these principles

Data science

,Data analytics
=the process of examining datasets in order to draw conclusions about the useful information
they may contain
- Descriptive Analytics: What has happened?
- Predictive Analytics: What could happen?
- Segmentation, regressions
- Prescriptive Analytics: What should we do?
- Complex models for product planning and stock optimization


Business problem → Data mining tasks
- A collaborative problem-solving between business stakeholders and data scientists
- Decomposing a business problem into solvable subtasks
- Matching the subtasks with known tasks for which tools are available
- Solving the remaining non-matched subtasks (by creativity!)
- Putting the subtasks together to solve the overall problem

Supervised vs unsupervised methods
The key question:
- Is there a specific target variable?
- Yes! → supervised
- No! → unsupervised

Unsupervised learning
- Training data provides “examples” - no specific “outcome”
- The machine tries to find specific patterns in the data
- Algorithm
- Clusters
- Anomaly detection
- Association discovery
- Topic modeling
- Because the model has no “outcome”, can not be evaluated


Examples: training data
- Are these customers similar? Customer profile
- Is this transaction unusual? Previous transactions

Supervised learning
- Training data has one feature that is the “outcome”
- Goal is to build a model to predict the outcome (machine learns to predict)
- The outcome has a known value, model can be evaluated
- Split the data into a training and test set
- Model the training set/predict the test

, - Compares the predictions to the known values
- Algorithm
- model/ensemble
- Logistic regression
- Time series

Examples: training data
- How much is this home worth? Previous home sales
- Will this customer default his loan? Previous loan that were paid/defaulted
- How many customers will apply for loan? Previous months of loan application


Consider two similar questions we might ask about a customer population
- Do our customers naturally fall into different groups? → no specific purpose
or target for the grouping → unsupervised
- Can we find groups of customers who have particularly high likelihoods of
canceling their service soon after their contracts expire? → here a specific
target is defined: will a customer leave when her contracts expire? →
supervised




Business understanding = a part where the analyst' creative parts plays a large role. The key
to a great success is a creative problem formulation by some analysts regarding how to cast the
business problem as one or more data science problems.
→ high level knowledge of the fundamentals helps creative business analysts see
novel formulations


Data understanding = important to understand the strengths and limitations of the data
because rarely is there an exact match with the problem. Understanding the different

, information within a database, with different intersecting populations and varying degrees of
reliability

Data preparation = analytic technology requires data to be in a form different from how it is
provided naturally, sometimes conversion is necessary. This process proceeds along with data
understanding, in which data are manipulated and converted into forms that yield better results

Modeling = the output of modeling is some sort of model or pattern capturing regularities in the
data

Evaluation = assess the data mining results rigorously and gain confidence that they are valid
and reliable before moving on. Evaluating include satisfying stakeholders with the quality of the
model’s decision. They want to see if the model does more good than harm.

Deployment = results of data mining are put into real use to realize return on investment

Case Capital One → see other summary

Lecture 2

Learning goals:
- Supervised segmentation
- Classification trees
- Parametric models
- Linear discriminant function
- Logistic regression
- Support vector machine

An intuitive way of thinking about extracting patterns from data in a supervised manner is to try
to segment the population into subgroups that have different values for the target variable
= supervised segmentation

Model
=a simplified representation of reality created to serve a purpose
- Abstraction of irrelevant details

Models serve different purposes
- Unsupervised setting: to identify (classes, groups, patterns, etc.(
- Descriptive
- Supervised setting: to predict (“to estimate an unknown value”)
- Predictive

Induction
=”generalizing from specific to general”

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper danterodrigo. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60904 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  9x  verkocht
  • (1)
  Kopen