100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
Eerder door jou gezocht
CS/MATH 1019 Discrete Math for Computer Science CS/MATH 1019 Exam Test 2 Questions with Verified Solutions | 100% Pass | Graded A+ |€14,82
In winkelwagen
CS/MATH 1019 Discrete Math for Computer Science
Alle documenten voor dit vak (14)
Verkoper
Volgen
YourAssignmentHandlers
Ontvangen beoordelingen
Voorbeeld van de inhoud
York University
CS/MATH 1019 Discrete Math for Computer
Science
CS/MATH 1019 Exam
Course Title and Number: CS/MATH 1019 Discrete Math
for CS
Exam Date: Midterm and Final Exam 2024- 2025
Instructor: [Insert Instructor’s Name]
Student Name: [Insert Student’s Name]
Student ID: [Insert Student ID]
Examination
180 minutes
Instructions:
1. Read each question carefully.
2. Answer all questions.
3. Use the provided answer sheet to mark your responses.
4. Ensure all answers are final before submitting the exam.
5. Please answer each question below and click Submit when you have
completed the Exam.
6. This test has a time limit, The test will save and submit automatically
when the time expires
7. This is Exam which will assess your knowledge on the course
Learning Resources.
Good Luck!
Downloaded by Jack mah
(mungaidavid2000@gmail.com)
, CS/MATH 1019 Discrete Math for Computer Science
CS/MATH 1019 Exam Test 2 Questions with Verified
Solutions | 100% Pass | Graded A+ |
YORK UNIVERSITY
SC/MATH 1019 3.0 D
TEST #2
SOLUTIONS
The total number of points for the Test is 90.
1. (10 points) Show that f (x) = (x + 2) log2(x2 + 1) + log2(x3 + 1) is O(x log2 x)
Solution. The function f is the sum of two functions f (x) = f1(x) + f2(x) where
f1(x) = (x+2) log2(x2+1) and f2(x) = log2(x3+1). Since we know that log 2(xm+1)
is O(log x), for all positive integers m, we have that both functions log2(x2 +
1) and log2(x3 + 1) are O(log2 x). Since f1 is a product of two functions g(x) = x
+ 2 which is obviously O(x), and log2(x2 + 1) which is O(log2 x), their product
f1(x)
is O(x log x). Therefore f (x) = f1(x) + f2(x) is O(max{|x log2 x|, | log2(x)|}) where
for x > 1, log2 x > 0, so
max{|x log2 x|, | log2(x)|} = max{x log2 x, log2(x)} = x log2 x.
Thus indeed, f (x) is O(x log2 x).
2. (5+5 points) (a) Prove by mathematical induction that for all positive integers
n
n
Σ
k · 2k = (n − 1)2n+1 + 2
k=1
Solution. Simple induction. Basis step. n = 1: 1 · 21 = (1 − 1)22 + 2 holds.
Inductive step. Suppose the equality
n
Σ
k · 2k = (n − 1) · 2n+1 + 2
k=1
holds for some n ≥ 1. Then for n + 1
n+1 n
Σ Σ
k·2k = k·2k+(n+1)2n+1 = (n−1)·2n+1+2+(n+1)2n+1 = (n−1+n+1)2n+1+2
k=1 k=1
= 2n2n+1 + 2 = [(n + 1) − 1]2(n+1)+1 + 2
the equality also holds.
(b) Prove by mathematical induction that 3n < n! for all n > 6.
Solution. Simple induction. Basis Step. For n = 7, 37 = 2178 < 5040 = 7! is
true. Inductive Step. Suppose 3n < n! for some n ≥ 7. Then n > 2, that is, 3 <
n + 1, so 3n+1 = 3n · 3 < (n!)3 < (n!)(n + 1) = (n + 1)!
Date: Dec 5, 2022.
1
Downloaded by Jack mah
(mungaidavid2000@gmail.com)
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper YourAssignmentHandlers. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €14,82. Je zit daarna nergens aan vast.