Index
MEDICAL IMAGE REGISTRATION......................................................................................... 2
Introduction to image registration..................................................................................2
Geometrical transformations.......................................................................................... 2
Image transformation..................................................................................................... 6
Point-based registration.................................................................................................. 7
Evaluation of the registration accuracy...........................................................................9
Intensity-based similarity metrics.................................................................................10
SEGMENTAION OF MEDICAL IMAGES................................................................................14
Evaluation of segmentation.......................................................................................... 14
Segmentation in feature space.....................................................................................16
Segmentation in feature space – clustering..................................................................18
Segmentation in feature space – classification.............................................................18
Generalization............................................................................................................... 20
Overfitting..................................................................................................................... 20
Overfitting in kNN......................................................................................................... 21
Dimensionality reduction..............................................................................................21
Atlases.......................................................................................................................... 23
Active shapes models................................................................................................... 25
COMPUTER-AIDED DIAGNOSIS.........................................................................................27
Introduction to CAD; Linear regression.........................................................................27
Logistic regression and neural networks.......................................................................28
Performing machine learning experiments...................................................................30
CAD convolutional neural networks..............................................................................31
Page 1 out of 34
,MEDICAL IMAGE REGISTRATION
Introduction to image registration
Image registration: the determination of a geometrical transformation that aligns one
view of an object with another view of that object, or another object. This can be the case
because of:
- Different positioning of the patient
- Movements of organs
- Movements of patient
- Distortions caused by imaging system
- Changes caused by interventions (e.g. surgery, chemo) in between the acquisition
of the images.
Applications of image registration:
- Combining information from different sources
- Comparison: differences in (groups of) subjects, or monitoring changes in a single
subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy.
Review of linear algebra
Matrix transpose:
Special matrices and vectors:
- Unit vector
- Symmetric matrix
- Orthogonal matrix
Determinant: the determinant of a transformation matrix T is the signed area of a unit
square shape after transforming it with T. The sign reflects whether the orientation has
changed.
Here no flip but rotation!
Geometrical transformations
Page 2 out of 34
,Translation:
For which the distance between two points (in 2D) can be described by the following
formula:
Rotation:
LET OP: Not every matrix can be considered as a rotation matrix. Rotation matrices must:
- Be orthogonal
- Have a determinant equal to 1
Page 3 out of 34
, Scaling
Shearing:
Reflection
Horizontal:
Vertical:
Composition of transformations: it is also possible to combine different sorts of
transformations. They can be combined by multiplying the transformation matrices.
- Rotation + translation (rigid) (links)
- Rotation, scaling + translation (rechts)
Page 4 out of 34
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper milouvanmil. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.