100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Mathematics for Statisticians lecture notes €15,49   In winkelwagen

College aantekeningen

Mathematics for Statisticians lecture notes

 1 keer bekeken  0 keer verkocht

The document contains detailed and complete lecture notes for all lectures in the course, complete with exercises, examples, and figures.

Voorbeeld 4 van de 32  pagina's

  • 18 oktober 2024
  • 32
  • 2024/2025
  • College aantekeningen
  • Garnet akeyr
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
eleonoraroncaglia
Mathematics for Statisticians

Lecture 1

A set is a collection of numbers, either finitely many or infinitely many. Real numbers are all
non-complex numbers, so numbers that do not involve i. The real numbers’ set has a symbol
ℝ.
A special kind of sets are the intervals, which are all the real numbers between 2 numbers, i.e.
every number between a and b. When it comes to intervals, we choose if we either want to
include the endpoints or not:
1. An open or round bracket means non inclusion
a. (0, 1) means all numbers such that 0 < 𝑥 < 1, so not 0 and 1
2. A closed square bracket means inclusion
a. [0, 1] means all numbers such that 0 ≤ 𝑥 ≤ 1
b. (0, 1] means all numbers such that 0 < 𝑥 ≤ 1

Exercise
Write in notation all numbers between − π and 10, excluding the former and including the
latter.

(− π, 10]

We use ± ∞ to indicate positive or negative infinity. For example, (5, ∞) is any 𝑥 > 5. if infinity
is the endpoint, one must use an open bracket.

Another set notation is where all elements are written within curly brackets. For example,
{1, 2, 3}. another example, we can write [0, 1] as {𝑥 ∈ ℝ: 0 ≤ 𝑥 ≤ 1}.
The symbol ∈ means belonging to a set, so 𝑥 ∈ ℝ means all numbers in ℝ. The symbol : means
“such that”.

Exercise
Use set notation to write the intervals [− 20, π] and (− ∞, 4).

{𝑥 ∈ ℝ: − 20 ≤ 𝑥 ≤ π}
{𝑥 ∈ ℝ: 𝑥 < 4}

A function is a map between two sets that assigns a unique output to each set. The domain
𝐷(𝑓) of a function is the set of all valid inputs and the range 𝑅(𝑓) is the set of all possible
outputs. The notation for functions is:
2
1. 𝑓(𝑥) = 𝑥 , 𝐷(𝑓) = ℝ, 𝑅(𝑓) = [0, ∞)
2
2. 𝑓: 𝑥 → 𝑥 , 𝐷(𝑓) = ℝ, 𝑅(𝑓) = [0, ∞)
Domains can differ. For example, 𝑓(𝑥) = 𝑥 has as domain 𝐷(𝑥) = {𝑥 ≥ 0}.

,Let 𝑓(𝑥) and 𝑔(𝑥) be two functions such that 𝐷(𝑔) ⊆ 𝑅(𝑓), the composition of 𝑓(𝑥) and 𝑔(𝑥)
is the function
(𝑓 ◦ 𝑔)(𝑥) or 𝑓(𝑔(𝑥)).

Exercise
2
If 𝑓(𝑥) = 𝑥 + 1 and 𝑔(𝑥) = 𝑥 − 2, find (𝑓 ◦ 𝑔)(𝑥) and (𝑔 ◦ 𝑓)(𝑥).

2 2
(𝑓 ◦ 𝑔)(𝑥) = (𝑥 − 2) + 1 = 𝑥 + 4𝑥 + 5
2 2
(𝑔 ◦ 𝑓)(𝑥) = 𝑥 + 1 − 2 = 𝑥 − 1

If 𝑓(𝑥) and 𝑔(𝑥) are two functions such that (𝑓 ◦ 𝑔)(𝑥) = 𝑥 = (𝑔 ◦ 𝑓)(𝑥) then 𝑓(𝑥) and 𝑔(𝑥)
are inverse functions and are noted by
−1
𝑔(𝑥) = 𝑓(𝑥) .

Exercise
3 3
Given 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) = 𝑥, calculate (𝑓 ◦ 𝑔)(𝑥) and (𝑔 ◦ 𝑓)(𝑥).

3
3
(𝑓 ◦ 𝑔)(𝑥) = 𝑥 = 𝑥
3 3
(𝑔 ◦ 𝑓)(𝑥) = 𝑥 =𝑥

2
Not all functions have an inverse. For example, the inverse of 𝑓(𝑥) = 𝑥 would be 2, but the
latter is not a function, because the same input can have two outputs. Visually, if, by tracing a
horizontal line on the function’s graph, the line meets the graph in more than one point at any
point, that function is not invertible.

A polynomial of degree 𝑛 is a function in the form
𝑛 𝑛−1
𝑓(𝑥) = 𝑎𝑛𝑥 + 𝑎𝑛−1𝑥 +... + 𝑎1𝑥 + 𝑎0
where 𝑎𝑖 ∈ ℝ and 𝑎𝑛 ≠ 0. A polynomial of degree 1 is a line. A polynomial of degree 2 is a
parabola. The roots or zeros of a function 𝑓(𝑥) are the values for which 𝑓(𝑥) = 0.

Exercise
2
Find the zeroes of 𝑓(𝑥) = 𝑥 + 𝑥 − 6.

−1± 1−4(1)(−6)
2
= 2, − 3


Let 𝑏 > 0, 𝑏 ≠ 1 be a real number. The exponential function is of the form
𝑥
𝑓(𝑥) = 𝑏 .
A few characteristics:
0
1. 𝑏 = 1 ∀𝑏 > 0

, 𝑥
2. 𝑏 ≠ 0 ∀𝑥 ∈ ℝ
𝑥
3. 𝑏 > 0 ∀𝑥 ∈ ℝ
4. 𝑓(𝑥) → ∞ as 𝑥 → ∞ and 𝑓(𝑥) → 0 as 𝑥 → − ∞, if 𝑏 > 1
5. 𝑓(𝑥) → 0 as 𝑥 → ∞ and 𝑓(𝑥) → − ∞ as 𝑥 → − ∞, if 0 < 𝑏 < 1
𝑥
Within the exponentials, we care most about 𝑏 = 𝑒 ≃ 2. 718. The function 𝑒 is called the
(natural) exponential function.

Exercise
𝑥 2 −3𝑥
Simplify (𝑒 ) 𝑒 .

𝑥 2 −3𝑥 2𝑥 −3𝑥 −𝑥 1
(𝑒 ) 𝑒 =𝑒 𝑒 =𝑒 = 𝑥
𝑒


𝑥
The logarithm is the inverse function of 𝑏 is the logarithm with base 𝑏 written
𝑙𝑜𝑔𝑏(𝑥).
If 𝑏 = 𝑒, we write 𝑙𝑛(𝑥), which means natural logarithm. For 𝑏 > 1, 𝑙𝑜𝑔𝑏(𝑥) is always
increasing, and only defined if 𝑥 > 0.
As exponential and logarithm are inverse functions, we have the following properties:
𝑥
1. 𝑙𝑜𝑔𝑏(𝑏 ) = 𝑥
𝑙𝑜𝑔𝑏(𝑥)
2. 𝑏 =𝑥

Exercise
Let 𝑙𝑛(𝑥) = 2. Find x.

𝑙𝑛(𝑥) 2 𝑙𝑛(𝑥) 2
𝑒 = 𝑒 and 𝑒 = 𝑥 which means that 𝑥 = 𝑒 .

Properties of the logarithm:
1. 𝑙𝑜𝑔𝑏(1) = 0
2. 𝑙𝑜𝑔𝑏(𝑏) = 1
𝑟
3. 𝑙𝑜𝑔𝑏(𝑥 ) = 𝑟 × 𝑙𝑜𝑔𝑏(𝑥)
4. 𝑙𝑜𝑔𝑏(𝑥𝑦) = 𝑙𝑜𝑔𝑏(𝑥) + 𝑙𝑜𝑔𝑏(𝑦)
𝑥
5. 𝑙𝑜𝑔𝑏( 𝑦 ) = 𝑙𝑜𝑔𝑏(𝑥) − 𝑙𝑜𝑔𝑏(𝑦)
𝑙𝑜𝑔𝑎(𝑥)
6. 𝑙𝑜𝑔𝑏(𝑥) = 𝑙𝑜𝑔𝑎(𝑏)


𝑛
For sums such that 𝑥1 + 𝑥2 +... + 𝑥𝑛, the notation for sums is ∑ 𝑥.
𝑛=1


Exercise

, Write 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 in notation.

10
∑ 𝑥
𝑛=1


Lecture 2

We say a number 𝐿 is the limit of a function 𝑓(𝑥) as 𝑥 approaches a value 𝑎, if 𝑓(𝑥) gets
arbitrarily close to 𝐿 as 𝑥 approaches 𝑎 from either side. The notation is:
lim 𝑓(𝑥) = 𝐿
𝑥→𝑎



Exercise
What is the limit lim 𝑙𝑛(𝑥)?
𝑥→1



lim 𝑙𝑛(𝑥) = 𝑙𝑛(1) = 0
𝑥→1



Exercise
2
𝑥 −3𝑥+2
What is the limit lim 𝑥−2
?
𝑥→2


0
Substituting 2 gives 0
, which is undefined. However, one can try to simplify the polynomial:
2
𝑥 −3𝑥+2 (𝑥−2)×(𝑥−1)
𝑥−2
= 𝑥−2
=𝑥−1
Now, one can do the limit lim 𝑥 − 1 = 2 − 1 = 1
𝑥→2



We say that 𝐿 is the right-sided (left-sided) limit of 𝑓 as 𝑥 approaches from the right (left),
and it is expressed as lim or lim
+ −
𝑥→𝑎 𝑥→𝑎



Exercise
0 𝑖𝑓 𝑥 < 0
What is the limit lim 𝐻(𝑡) where 𝐻(𝑡) = { 1 𝑖𝑓 𝑥 ≥ 0
𝑡→0



If the 0 is approached from the negative side, the limit returns 0. However, if 0 is approached
from the positive side, the limit equals 1. Thus, we cannot find a defined value 𝐿. In this case,
lim = 1 and lim = 0.
+ −
𝑡→0 𝑡→0



Let 𝑓(𝑥) be a function and suppose it is defined at all points in an open interval containing a
point 𝑥 = 𝑎. then lim 𝑓(𝑥) exists and equals 𝐿 if and only if both one-sided limits both exist
𝑥→𝑎
and equal 𝐿.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper eleonoraroncaglia. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €15,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 83637 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€15,49
  • (0)
  Kopen