100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Introduction to Computational Thinking - Minor BFW €4,99   In winkelwagen

Samenvatting

Samenvatting Introduction to Computational Thinking - Minor BFW

 177 keer bekeken  5 keer verkocht

Samenvatting voor het tentamen van de colleges van het minor vak 'Introduction to Computational Thinking'. Deze samenvatting is in het Engels. Tip: oefen ook veel. Oefententamen was representatief voor het tentamen.

Voorbeeld 2 van de 7  pagina's

  • 28 januari 2020
  • 7
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
bfw1620
Aantekeningen colleges ICT
Mathematical fundamentals (ma 2-9)
Parameter = constant & make calculations more general, usually considered positive
Operations  + - / *
Opening parentheses:
Introducing parentheses (= factoring):
Parameter equation solving: | Factoring: | Solving quadratic equations:(check afterwards!)
| |
| |
| |
Multiple variables:  solve how one variable depends on the other  choose simplest option
 Substitution approach ----------------------->
 Elimination approach
------------------------------------------->

Function = formula describing how one quantity depends on other quantities (y = f(x) -> f(x) = x^2 )
 x = independent variable y = dependent variable
 Functions have a domain (x) = set of all possible input values & range (y) = set of all possible output values
 [ of ] = tot die waarde < of > = bij infinity
Limit (L): L is the limit of the function f(x) when f(x) approaches L in case x approaches a  lim
x→ ∞
f ( x ) =L

 Only defined when approached from either side is the same: lim
x ↑a
f ( x )=lim f ( x )=L
x ↓a
 Limits can be found by filling out x = a in f(x)
 Exceptions: limits at infinity and infinite ‘limits’ (vb. f(x) = b + 1 / x)
g (x)
Limits for rational functions (vb. f ( x )= )
h( x)'
 Divide by highest power in denominator
 Result depends on highest powers in nominator and denominator
 Highest power numerator = denominator  limit = constant
 Highest power numerator < denominator  limit = 0
 Highest power numerator > denominator  no limit (± ∞ )

Local slope (derivative)  differentiation = calculating deriv of a function
- ( f +g )' ( x )=f ' ( x ) + g' ( x )
- ( f −g )' ( x ) =f ' ( x )−g' ( x )
- ( Cf )' ( x )=C f ' ( x )
- Product rule: h ( x )=f ( x ) g ( x ) → h' ( x )=f ' ( x ) g ( x ) + f ( x ) g ' ( x )
- Chain rule: h ( x )=f ( g ( x ) ) =f ∙ g ( x ) →h' ( x )=f ' ( g ( x ) ) g '( x)
f (x ) g ( x ) f ' ( x ) −f ( x ) g ' (x)
- Quotient rule: h ( x )= → h' ( x )= 2
g ( x) (g ( x ))

Shapes of common functions:
o Parabolic (no asymp)
o Cubic (no asymp)
o Square root func
o Hyperbolic func
o Exponential growth(e a) / decay (e−a)
Plan to draw graphs:
I. Intersection points x-axis  solve y = f (x) = 0
II. Intersection points y-axis  fill in x = 0 in y = f (x)
III. lim f ( x )
Horizontal asymptotes  find limit x→ ±∞
p (x)
IV. Vertical asymptotes for rational functions  x values for which q (x) = 0 ?
q( x )
V. X values of maxima / minima  solve f ‘ (x) = 0
VI. Y values at maxima / minima  fill in x value(s) in f (x)
VII. Sketch all possible graphs

, Introduction to modeling (di 3-9)
Model = simplified abstraction of reality  focus on only certain aspects of study object
Types of models: Animal/disease Conceptual/verbal Cartoon Quantitative
Why quantitative models: increased precision/remove uncertainty | predicition (inter- & extrapolation) | possibility to
analyze (simulation, mathematics) | automated analysis | explain ‘complex’ system behaviour based on individual
components | integrative view on data acquired at different levels
Models based on observations cannot be proven correct (only in mathematical statements)
 Model falsification: bewijs waarom model incorrect is
 Model validation: verify predictions by experimentation  increase confidence in model
 Scope of model (beschrijft bepaald deel / specific circumstances)
Mechanistic models describe mechanism underlying observed behaviour  understanding
Descriptive/phenomenological models summarize data  powerful for prediction
Damped oscillations vs. persistent oscillations -------------------------------------------------------->
 Negative feedback can lead to oscillations
Modeling of pathway  include isoforms in model  compare model & experiment  knockout of isoforms  result


Differential equations I (di 3-9)
Cartoon network models:
 Based on verbal description | nodes: molecular species | arrows: molecular interactions (form, degr, regulation)
Mathematical network models:
 Remove uncertainty of model behaviour by becoming quantitive
 Modeling: Ordinary Differential Equations (ODEs)  describe dynamics | arrows = quantitative eaction rates
(State) variables: abundance of modeled molecular species | can vary over time
Parameters: values are fixed over studied time scale | characterizes environmental effects & interactions (vb. degr rate)
 In biology, parameters are positive
Reaction rates: predict changes over time
- Depends on: conc of reactants | environmental conditions (temp, pH)
If rate is known, reactions can be described as Ordinary Differential Equations (ODEs)
ODE assumptions: reaction rates are approximated:
I. Well-mixed environment  rates considered independent of position in space (but: spacial structure in cells)
II. Many molecules are present  continuous rather than discrete (but: some processes rely on only 1e 5 molecs)
Translation from cartoon network to a quantitative description (here: reactions)


------------------>


Law of mass-action:  reaction rate is proportional to the product of the concs of the reactants
 k, k1, k2, k3 = rate constants
k 0 A k1 da(t )
 =rate of change of [ A ] =k 0−k 1 a ( t )=rate of production−rate of decay
→ → dt
Cartoon to quantitative description: chemical reaction network  reaction rates  assumptions  ODE


Differential equations II (wo 4-9)
Analysis of ODEs: I. Analytical/symbolic solution II. Numerical simulationIII. Model analysis
Ak da
Analytical: =−ka a ( t )=D e−kt = exponential decay (D = initial conc)
→ dt
Numerical: in silico experi  how does system behave?
 Predict system behaviour over time for given conditions | use numerical simulations in software packages (vb. R)
da(t ) a ( t+ h )−a (t)
Approximation of solution: Euler’s method =f (a (t ) ) f ( a (t)) ≈ a ( t +h ) ≈ a ( t )+ hf ¿ )
dt h

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper bfw1620. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 80796 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99  5x  verkocht
  • (0)
  Kopen