100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS €13,34   In winkelwagen

Tentamen (uitwerkingen)

MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS

 1 keer bekeken  0 keer verkocht
  • Vak
  • HOM
  • Instelling
  • HOM

MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS

Voorbeeld 3 van de 19  pagina's

  • 2 november 2024
  • 19
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • HOM
  • HOM
avatar-seller
MKT317 EXAM 2 READING Q'S
QUESTIONS WITH COMPLETE
ANSWERS

Suppose ccwe cccreated cca ccmultiple cclinear ccregression ccmodel ccusing ccthe ccvariable
cclocation cc(the cclocation ccis cceither ccNORTH ccor ccSOUTH, ccand ccthey ccare ccincluded
ccin ccthe ccmodel ccin ccdummy ccvariable ccformat).
The ccmodel ccwe ccobtained ccis
Estimated ccaverage ccselling ccprice cc(in ccthousands ccof ccdollars) cc= cc13.9 cc+
cc0.07(size, ccin ccsqft) cc+ cc2(SOUTH)
Use ccthe ccmodel ccto cccompute ccthe ccestimated ccaverage ccselling ccprice ccof cca cc2000
ccsquare ccfoot cchouse ccthat ccis ccin ccthe ccSOUTH cclocation. cc- ccAnswer cc155.9
ccthousand ccdollars


Suppose ccwe cccreated cca ccmultiple cclinear ccregression ccmodel ccusing ccthe ccvariable
cclocation cc(the cclocation ccis cceither ccNORTH ccor ccSOUTH, ccand ccthey ccare ccincluded
ccin ccthe ccmodel ccin ccdummy ccvariable ccformat).
The ccmodel ccwe ccobtained ccis
Estimated ccaverage ccselling ccprice cc(in ccthousands ccof ccdollars) cc= cc13.9 cc+
cc0.07(size, ccin ccsqft) cc+ cc2(SOUTH)
Use ccthe ccmodel ccto cccompute ccthe ccestimated ccaverage ccselling ccprice ccof cca cc2000
ccsquare ccfoot cchouse ccthat ccis ccin ccthe ccNORTH cclocation. cc- ccAnswer cc153.9
ccthousand ccdollars


Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(as.factor(Spending) cc~ ccas.factor(FICO) cc+ ccas.factor(Years) cc+
ccas.factor(AgeGroup) cc+ ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccAgeGroup cc+ ccSegment,
ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

,Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccYes cc- ccthis ccwill cccreate ccthe ccdesired ccmodel.

Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(as.factor(Spending) cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

7. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccAgeGroup cc+ ccas.factor(Segment),
ccdata=DF)
summary(Model) cc- ccAnswer ccYes cc- ccthis ccwill cccreate ccthe ccdesired ccmodel.

8. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccas.factor(FICO) cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

9. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+ ccSegment,
ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

Since ccthe ccaverage ccprice ccof cca cccolor ccJ ccdiamond ccis cchigher ccthan ccthe
ccaverage ccprice ccof cca cccolor ccD ccdiamond, ccit ccmeans ccthat ccthe ccpeople ccare
ccwilling ccto ccpay ccfor ccmore ccdiamonds ccthat ccare cccolor ccJ ccthan cccolor ccD cc- cccolor
ccJ ccis ccthe ccmore ccdesired cccolor. cc- ccAnswer ccfalse


Since cccolor ccD ccdiamonds ccappear ccto ccbe ccmore ccexpensive cconce ccwe cchave
ccaccounted ccfor ccthe ccsize, ccbut ccthe ccaverage ccprice ccof cca cccolor ccJ ccdiamond ccis
cchighest ccoverall, ccit's cclikely ccthat ccamong ccdiamonds ccincluded ccin ccthe ccdata ccset,
ccthere ccare ccmany cclarge cc(and cctherefore ccexpensive) cccolor ccJ ccdiamonds, ccand
ccmany ccsmall cc(and cctherefore ccless ccexpensive) cccolor ccD ccdiamonds. cc- ccAnswer
cctrue


In ccthe ccfirst ccscatter ccplot, ccthe ccprice ccaxis cclabels ccthe ccvalues cc300, cc1000,
cc3000, cc10000, cc30000. ccIs ccprice ccbeing ccgraphed ccusing ccthe cclinear ccscale ccor
ccthe cclog ccscale? cc- ccAnswer cclog ccscale

, Overall cc(not ccaccounting ccfor ccagency), ccthe ccpredicted ccprice ccof cca cc2000 ccsquare
ccfoot cchouse ccis cc- ccAnswer ccThe ccmodel cccreated ccin ccthis ccsection, ccwhich ccwas
cccreated ccusing ccthe ccR cccommands ccModel cc<- cclm(PRICE cc~ ccSIZE cc+
ccas.factor(AGENCY), ccdata=HOUSEDATA), ccdoes ccnot ccgive ccus ccenough
ccinformation ccto ccanswer ccthis ccquestion.


explanation cc: ccThe ccmodel ccthat ccwas ccgiven ccaccounts ccfor ccAgency, ccand ccall
ccinterpretations ccand cccomputations ccwill ccaccount ccfor ccAgency. ccIf ccwe ccdon't ccwant
ccto ccaccount ccfor ccagency cc(and cconly ccsquare ccfootage), ccthen ccwe ccneed ccto
ccmake cca ccnew ccmodel ccwhere ccthe cconly ccx-variable ccis ccSIZE; ccthe cccurrent
ccmodel ccdoes ccnot ccprovide ccenough ccinformation ccto ccmake ccthe ccdesired
cccalculation.


True ccor ccFalse: ccThe ccaverage ccselling ccprice ccfor cchomes ccsold ccby ccAgency cc2 ccis
ccabout cc18.72 ccthousand ccdollars ccless ccthan ccthe ccaverage ccselling ccprice ccof
cchomes ccsold ccby ccAgency cc1. cc- ccAnswer ccfalse,
ccThe cc18.72 cccame ccfrom cca ccmodel ccthat ccincludes ccSIZE, ccso ccthe ccinterpretation
ccmust ccinclude cc"among cchomes ccof ccthe ccsame ccsize"


True ccor ccFalse: ccWhen cccomparing cchomes ccof ccthe ccsame ccsize, ccif cca cchouse ccis
ccsold ccby ccAgency cc4, ccthe ccaverage ccprice ccdecreases ccabout cc17.39 ccthousand
ccdollars. cc- ccAnswer ccfalse


How ccdo ccwe ccknow ccthat ccthis ccmodel ccwas ccconstructed ccincorrectly? cc- ccAnswer
ccbThis ccmodel ccis ccincorrect ccbecause ccthe ccoutput ccdoes ccnot ccinclude ccdummy
ccvariables; ccthe ccclassmate ccshould cchave ccused ccas.factor(AGENCY).


Create ccthe ccmultiple cclinear ccregression ccmodel ccwhere ccthe ccindependent ccvariables
ccare ccSIZE, ccTRAIN.DIST, ccand ccthree ccof ccthe ccfour ccdummy ccvariables ccassociated
ccwith ccAGENCY. ccWhat ccpercentage ccof ccthe ccvariation ccin ccprice ccis ccexplained ccby
ccthe ccvariables ccSIZE, ccTRAIN.DIST, ccand ccAGENCY? ccIn ccother ccwords, ccwhat ccis
ccthe ccMultiple ccR-squared ccof ccthis ccmodel cc(as ccshown ccat ccthe ccbottom ccof ccthe
ccsummary ccoutput)? cc- ccAnswer cc0.9460


When cccomparing cchomes ccof ccthe ccsame ccsize ccand ccsame ccdistance ccfrom ccthe
cctrain, ccwhat cccan ccwe ccsay ccabout ccthe ccdifference ccin ccaverage ccprices ccbetween
ccthe ccNorth ccand ccthe ccSouth? cc- ccAnswer ccWhen cccomparing cchomes ccof ccthe
ccsame ccsize ccand ccsame ccdistance ccfrom ccthe cctrain, ccthere ccis ccnot cca ccsignificant
ccdifference ccin ccaverage ccprice ccbetween cchomes ccin ccthe ccNorth ccand ccthe ccSouth.


Above, ccwe cccreated ccthe ccmodel: ccLOCATIONModel cc<- cclm(PRICE cc~ ccLOCATION,
ccdata=HOUSEDATA)
What cccan ccwe ccinterpret ccfrom ccthe ccoutput ccfrom ccthis ccmodel? cc(ignore ccoutput
ccfrom ccall ccprevious ccmodels) cc- ccAnswer ccWhen ccnot ccaccounting ccfor ccany ccother
ccpiece ccof ccinformation ccabout cchomes, ccthe ccaverage ccselling ccprice ccof cchouses ccin

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LucieLucky. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €13,34. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 72042 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€13,34
  • (0)
  Kopen