100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Data Science Summary (Univsersity of Twente( €7,16
In winkelwagen

Samenvatting

Data Science Summary (Univsersity of Twente(

 6 keer bekeken  0 keer verkocht

Summary of the master-course data science at university of twente.

Voorbeeld 3 van de 28  pagina's

  • 10 november 2024
  • 28
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
jcgroos
Data Science
DEP Summary
We have data from a lot of sources (files) and we want to do something
with this data (senses, visualizationa)  the sources are almost never in
the shape we need, we put it in a shape of a ‘cube’

- (Data)sources  cubes (DBMS)  senses (visualisation, analytical
applications)
- We have to transform or re-shape the data to store it in the DBMS
and then to use it for e.g. analyzation




DEP  mostly about the preparing phase of using the data science process
(often takes 80% of the time)
DM  mostly about the analysis phase of using the data science process

We use a cube:
- The cube is a generic shape for data, it fits analytical purposes
- A dataset often contains many related cubes
 each cube focuses on one or more facts
 they are related through dimensions
- Data is an asset: it should not live in files transferred by email or
download (you get many different versions), it should live in a ‘safe
place’: a DBMS (database management system), so you can connect
to it

Method (of using the cube)
1. Design the cube
 Determine the questions the data should answer
 Envision tabular reports that can answer the questions
 Determine for each question and report: the fact, dimensions and
granularity
 Combine into one star schema
 Formulate what one row in fact table means
2. Design associated table structure (UML)

, 3. Create empty tables in database (SQL)
4. Prepare data and fill tables (SQL)
Data exploration  what is in the source data? How is it represented?

Databases:
- A database is a possibly large collection of data, that has to be
shared/exchanged, searched, corrected etc., and it should under no
circumstances get lost or corrupted in any way
- A DBMS (database management system) is software that manages
databases, allows these actions, and makes sure that your data is
safe
 Availability, reliability, performance, scalability, security

Data is often structured in tables:
- Rows are ‘records’, columns are ‘attributes’
- Attributes = the properties or characteristics of the data stored in a
dataset, often referred to as columns in a table. Each attribute
represents a specific aspect of the entity being described, and it
holds a value for each record (or row) in the dataset.
- The ‘instance data’ is the ‘real’ data (green), the ‘schema’ is the
description of the table structure (blue)




The concept ‘key’ = a collection of one or more attributes that uniquely
determine a record in a table
- primary key = one most important key
- foreign key = attribute(s) in a table that form a reference to one or
more record in another relation (can connect to tables)  what we
use a key for: from one table you can refer to a record in another
table by means of this key
- surrogate key = artificially added code or number to function as a
key

Example  In the tables above
- First table: ‘Number’ is the primary key, ‘From’ and ‘To’ are the
foreign key (connects the first table to two other tables)
- Second table: 'Code’ is the primary key

Database server
- This is the computer system running the DBMS software

, - It runs the background serving (SQL) requests and keeping your data
safe


Database client = a tool accessing the database server (e.g. R, Tableau)
- We use PhpPgAdmin for database administration
- We use R for data cleaning/transforming
- We use Tableau for data visualization (not with R)
 These are all database clients connecting to the server

SQL = the standard language used for managing and manipulating
relational databases. SQL requests allow data scientists to retrieve, insert,
update, and delete data from databases.

Shapes of data
- Data is often structured in tables  the structure of the tables and
contents often have to be reshaped to be able to use them
- There is more to shape than the structure of the data, the contents
can also be in the wrong shape (different currencies, missing values
etc.)  problems with data quality are often more time consuming
than re-shaping the structure

Data exploration: initial phase of data analysis where the dataset is
examined to gain insight into structure, patterns, quality, shape etc.
- To find quality problems  actively search for them, using tools like:
Summery statistics & Data visualization, test assumptions (e.g.
uniqueness)
Common Summary statistics & visualization
- Per attribute
 basic: range, mean, median etc.
 advanced: distribution (histogram), Skewness/Kurtosis
(asymmetry & peakiness), percentiles, outliers, Cross-tabulation,
temporal/spatial patterns
- Between attributes
 Correlation & covariance
 Assumptions: inclusion (keys which connect tables), multi-
attribute uniqueness, semantic dependencies (relationship
between words(


Attribute types & formats
- Not every analysis method can be applied to any data, some have
limitations depending on attribute types:
 Continues  real numbers, time, coordinates
 Discrete  integer, nominal (limited set of categories, like
Male/Female), ordinal (same as nominal but with an order, like
Low/Medium/High)


Attributes always have a type, types which are often occurring:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jcgroos. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,16. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59804 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,16
  • (0)
In winkelwagen
Toegevoegd