This is a detailed report template for you to cope paste during exams
The content includes how you can report One-way ANOVA and all t-tests
Score 8.5/10 with the template
One sample t-test
Hypotheses, What test, Scale and Reliability, Average score
To test whether { },a one-sample t-test was performed.
{ } was measured using { how many questions}on a { } point scale.
It shows good/bad reliability α={ }. The average score was __(SD=__).
α >.7 → good reliability
Assumptions- One sample t-test (the median of the scale → lowest + largest / 2) Check CLT
- Normally Distributed
The data score was normally distributed (z-score skewness=__ / z-score kurtosis=__ ).
- NOT Normally Distributed BUT CLT applies
The data score was not normally distributed (z-score skewness=__ / z-score kurtosis=__ ).
But since the number of participants is superior to __, we can apply the CLT and run a normal one-
sample t-test.
- NOT Normally Distributed and CLT doesn’t apply
The data score was not normally distributed (z-score skewness=__ / z-score kurtosis=__ ).
Therefore, we report the Wilcoxon Rank statistic and the median along with the mean.
z-score: Skewness / SE; Kurotisis/SE→ z between +1.96&1.96→normally distributed
Results - One sample t-test
- Normally Distributed or NOT Normally Distributed BUT CLT applies
On average, the difference between
{the sample average} and {the central value of the scale __} was / was not significant (Mdif= __ ,
t(df) =__, p < .001 or p=__ , 95% CI [__, __]).
The difference represents a small / medium / large- sized effect d =__.
Irrelevant effect size: d < 0.2; Small effect size: 0.2 < d < 0.4; Medium effect size: 0.4 < d < 0.8; Large effect size: d > 0.8
- NOT Normally Distributed and CLT doesn’t apply
On average, the data { } (M = __, SD = __) was lower than / higher than / similar to the
central value of the scale__.
Scores of { } (Median=__) did / did not significantly differ from__( central value of the
scale) (W= __ , p =__).
The difference represents a small / medium / large- sized effect r =__.
Small r = .10 ; Medium r = .30 ; Large r = .50 (Between 0~1)
Reject the null or not
The null hypothesis can / cannot be rejected.
P <.05 → reject; CI doesn’t cross 0 → reject
Support initial hypothesis or not ----Check the mean score!
Based on the descriptives and the analysis, the results provide / cannot provide support for the initial
hypothesis: { }.
,
, Independent samples t-test
Hypotheses, What test, Scale and Reliability, Average score
To test whether { }, an independent samples t-test was performed.
{ } was measured using { _questions}on a { } point scale.
It shows good / bad reliability α=__. The average score was__(SD=__).
α >.7 → good reliability
Assumptions-CHECK CLT of each group
z-score: Skewness/SE; Kurotisis/SE→ z between +1.96&1.96→normally distributed | VR: High variance / low variance
- Normally Distributed
The data score was normally distributed for {group1} (z-score of skewness=__/ z-score kurtosis=__ ).
The data score was also normally distributed for {group2} (z-score of skewness=__/ z-score
kurtosis=__).
- NOT Normally Distributed BUT CLT applies
The data score was / was not normally distributed for {group1} (z-score of skewness=__/ z-score
kurtosis=__ ).
The data score was / was not normally distributed for {group2} (z-score of skewness=__/ z-score
kurtosis=__ ). But since the number of participants of {group1 / group2 / both groups} is superior to
__, we can apply the CLT and run a normal independent t-test.
- Homogeneity was met
Homogeneity of variances can be assumed (VR =__).
- Homogeneity was not met
Homogeneity of variances cannot be assumed (VR =__). The Levene’s test reconfirmed this violation
of homogeneity (P=__). Therefore, the Welch’s test was used.
- NOT Normally Distributed and CLT doesn’t apply
The data score was / was not normally distributed for {group1} (z-score of skewness=__/ z-score
kurtosis=__ ).
The data score was / was not normally distributed for {group2} (z-score of skewness=__/ z-score
kurtosis=__ ).
Therefore, we present the Mann-Whitney U statistic and the median scores.
- Homogeneity was met
Homogeneity of variances can be assumed (VR =__).
- Homogeneity was not met
Homogeneity of variances cannot be assumed (VR =__). The Levene’s test reconfirmed this violation
of homogeneity (P=__).
In Levene’s test P > .05, homogeneity is met.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lynienlin. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,99. Je zit daarna nergens aan vast.