100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
WGU C949 Data Structures and Algorithms I Exam test preparation Questions and Must have marking scheme Updated version 2024/2025 €11,36   In winkelwagen

Tentamen (uitwerkingen)

WGU C949 Data Structures and Algorithms I Exam test preparation Questions and Must have marking scheme Updated version 2024/2025

 5 keer bekeken  0 keer verkocht
  • Vak
  • WGU C949 Data Structure and Algorithm
  • Instelling
  • WGU C949 Data Structure And Algorithm

WGU C949 Data Structures and Algorithms I Exam test preparation Questions and Must have marking scheme Updated version 2024/2025 Binary search equation - correct answer log2(Size of elements) + 1 Selection sort - correct answer is a sorting algorithm that treats the input as two parts, a sort...

[Meer zien]

Voorbeeld 3 van de 26  pagina's

  • 12 november 2024
  • 26
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • WGU C949 Data Structure and Algorithm
  • WGU C949 Data Structure and Algorithm
avatar-seller
WGU C949 Data Structures and Algorithms I
Exam test preparation Questions and Must
have marking scheme Updated version
2024/2025

Binary search equation - correct answer log2(Size of
elements) + 1


Selection sort - correct answer is a sorting algorithm that
treats the input as two parts, a sorted part and an unsorted part,
and repeatedly selects the proper next value to move from the
unsorted part to the end of the sorted part.


Selection sort, comparing sort times - correct answer A list
with twice as many elements requires 4 times as many
comparisons.


Insertion sort - correct answer is a sorting algorithm that
treats the input as two parts, a sorted part and an unsorted part,
and repeatedly inserts the next value from the unsorted part into
the correct location in the sorted part.


Insertion sort's typical runtime is - correct answer O(N^2)


A nearly sorted list - correct answer only contains a few
elements not in sorted order. Ex: (4, 5, 17, 25, 89, 14) is nearly
sorted having only one element not in sorted position.

,Shell sort - correct answer is a sorting algorithm that treats
the input as a collection of interleaved lists, and sorts each list
individually with a variant of the insertion sort algorithm.


Shell sort: Gap Value - correct answer The gap value equals
the number of interleaved lists.


Shellsort will properly sort an array using any collection of gap
values, provided the collection contains - correct answer True


Quicksort - correct answer is a sorting algorithm that
repeatedly partitions the input into low and high parts (each part
unsorted), and then recursively sorts each of those parts.


Quicksort: midpoint - correct answer lowindex + (highindex -
lowindex) / 2


The quicksort algorithm's runtime - correct answer is
typically O(N log N)


Quicksort: Sorted partitions - correct answer The elements
within each part can be in any order once the algorithm
completes. The only requirement is that all elements in the left
partition are less than or equal to all elements in the right
partition.


Merge sort - correct answer is a sorting algorithm that
divides a list into two halves, recursively sorts each half, and
then merges the sorted halves to produce a sorted list. The

, recursive partitioning continues until a list of 1 element is
reached, as list of 1 element is already sorted.


Merge sort: Right Partition - correct answer Elements at
indices from j + 1 to k are in right partition.


Merge sort: Left Partition - correct answer Elements at
indices from i to j, inclusive, are in the left partition.


Merge sort: j = midpoint - correct answer j is the midpoint in
the list that divides the list into two halves.


The merge sort algorithm's runtime is - correct answer O(N
log N)


Bucket sort - correct answer is a numerical sorting algorithm
that distributes numbers into buckets, sorts each bucket with an
additional sorting algorithm, and then concatenates buckets
together to build the sorted result.


Bucket sort equation - correct answer 14 * 10 / (99 +1)
10 is the number of buckets you have, so it changes with how
many buckets you have.


Radix sort - correct answer is a sorting algorithm specifically
for an array of integers: The algorithm processes one digit at a
time starting with the least significant digit and ending with the
most significant. Two steps are needed for each digit. First, all
array elements are placed into buckets based on the current

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper KieranKent55. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €11,36. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 72042 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€11,36
  • (0)
  Kopen