100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
A-level Maths (OCR) Prep Exam With Solved Solutions. €10,02   In winkelwagen

Tentamen (uitwerkingen)

A-level Maths (OCR) Prep Exam With Solved Solutions.

 0 keer bekeken  0 keer verkocht
  • Vak
  • A level Maths
  • Instelling
  • A Level Maths

- Sn = n/2 (2a + (n-1)d) - Sn = n/2 (a + l) where a is the first term and l is the last term - Answer formula of an arithmetic series the sum of the terms of an arithmetic sequence - Answer what is an arithmetic series - Un = a + (n-1)d - a = the first term - d = the common differenc...

[Meer zien]

Voorbeeld 3 van de 28  pagina's

  • 18 november 2024
  • 28
  • 2024/2025
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • A level Maths
  • A level Maths
avatar-seller
A-level Maths (OCR) Prep Exam With
Solved Solutions.
- Sn = n/2 (2a + (n-1)d)

- Sn = n/2 (a + l) where a is the first term and l is the last term - Answer formula of an arithmetic series



the sum of the terms of an arithmetic sequence - Answer what is an arithmetic series



- Un = a + (n-1)d

- a = the first term

- d = the common difference - Answer nth term of an arithmetic sequence



- Un = ar^(n-1)

- a = first term

- r = common ratio - Answer nth term of a geometric sequence



- Sn = a(1-r^n) / 1-r

- Sn = a(r^n - 1) / r-1

where r does not equal 1 - Answer formula of first n terms of a geometric sequence



the sum of the values tend towards infinity - Answer divergent sequence



- the sum of the values tend towards a specific number

- it is only convergent if |r|<1 - Answer convergent sequence



a / 1-r - Answer sum to infinity of a geometric series



- Answer series can be shown using sigma notation

,- defines each term of a sequence as a function of the previous term

- to find the members of the sequence substitute in n=1, n=2 ... using the previous terms given - Answer
recurrence relation of form Un+1 = f(Un)



it is decreasing - Answer if Un+1 < Un for all n ∈ ℕ, what is true of the sequence



- it is periodic

- means that the terms repeat in a cycle

- k = the order of the sequence (how often the terms repeat) - Answer if Un+k = Un for all n ∈ ℕ, what
is true of the sequence



(x+y)(x-y) - Answer x^2-y^2



* (a-sqrt(b) / a-sqrt(b)) - Answer rationalising the denominator of e.g. 1/sqrt(b)+a



b^2 - 4ac > 0 has 2 distant real roots

B^2 -4ac = 0 has on real repeated root

b^2 - 4ac < 0 has no real roots - Answer using the discriminant to find number of roots



if f(x) = a(x+p)^2 + q, then the turning point is (-p,q) - Answer completing the square to find the turning
point



< is dotted line

≤ is solid line - Answer using lines to represent < and ≤



x=0 and y=0 - Answer where are the asymptotes of y = k/x



translation up by a units - Answer y = f(x) + a

, translation left by a units - Answer y = f(x+a)



stretch vertically by scale factor a - Answer y = af(x)



stretch by scale factor 1/a horizontally - Answer y = f(ax)



reflection in x-axis - Answer y = -f(x)



reflection in y-axis - Answer y = f(-x)



m = (y2 - y1)/(x2 - x1) - Answer calculating the gradient with 2 points



y-y1=m(x-x1) - Answer another way to calculate equation of a line



y= -(1/m)x - Answer equation of line perpendicular to y = mx



Sqrt ((x2 - x1)^2 + (y2 - y1)^2 ) - Answer distance between (x1,y1) and (x2,y2)



x^2 + y^2 = r^2 - Answer equation of circle centre (0,0)



(x-a)^2 + (y-b)^2 = r^2 - Answer equation of circle centre (a,b)



centre: (-f,-g)

radius: sqrt (f^2 + g^2 -c) - Answer centre and radius of x^2 + y^2 + 2fx + 2gy + c = 0



perpendicular - Answer a tangent to a circle is ...... to the radius of the circle at the point of intersection



the centre of a circle - Answer the perpendicular bisector of a chord will go through.....

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper TestSolver9. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,02. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75759 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,02
  • (0)
  Kopen