100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Empirical economics summary of lectures and bonus explanations €6,99
In winkelwagen

Samenvatting

Empirical economics summary of lectures and bonus explanations

1 beoordeling
 19 keer verkocht

This is my handwritten summary. It contains: - all the mandatory chapters from the book - some self-written bonus explanations to clarify difficult matters. - tips and tricks from the tutorial sessions. I also made sure that what was written in the lecture slides corresponded with the summary so th...

[Meer zien]

Voorbeeld 4 van de 45  pagina's

  • Nee
  • 3.4.11.18.13.14.9.15.16.7.17
  • 12 maart 2020
  • 45
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: flaviacereceda • 1 jaar geleden

avatar-seller
Merijnvan
Introduction to Econometrics
J.M. Wooldridge, Summary by Merijn

, To all those that read my summary. The book I have summarized here, plain
simply sucks. It is hard to read, difficult to understand and is very presumptuous
in its reasoning.

That’s why you’ll find a lot of extra parts in this summary, or restructurings of
chapters or even completely new paragraphs just to explain things.
Only then, was I able to create a concise and understandable summary for
myself and hopefully for you too.

Have fun while reading and excuse me for profanity here and there, it’s
sometimes just a really difficult mess 😊

,2 CONTENTS
3 The simple regression model...............................................................................................................6
3.1 Defining the simple regression model..........................................................................................6
3.1.1 Proving Exogeneity................................................................................................................6
3.1.2 Proving how exogeneity works..............................................................................................8
2.4 Units of measurement and functional form.................................................................................9
3.1.3 The effect of changing units of measurement on OLS statistics.............................................9
3.1.4 Incorporating nonlinearities in simple regression..................................................................9
3.1.5 So why the hell do we still call this a linear regression?......................................................10
4 Multiple regression analysis: estimation...........................................................................................10
4.1 Why go for multiple regression?.................................................................................................10
4.2 How multiple regression works..................................................................................................10
11 OLS and time-series data.................................................................................................................12
11.4 Using highly persistent time series in regression analysis.........................................................12
4.2.1 When something is strongly dependent..............................................................................12
4.2.2 Strong and weak dependence.............................................................................................13
4.2.3 Tricks to solve the issues with high persistence...................................................................13
18 Advanced time series topics............................................................................................................13
18.2 Testing for Unit Roots...............................................................................................................13
4.2.4 The Dickey Fuller test...........................................................................................................13
4.3 Spurious regression....................................................................................................................14
4.4 Cointergration and Error correction models...............................................................................14
4.5 Forecasting.................................................................................................................................14
4.5.1 Understanding how forecasting errors work.......................................................................14
4.5.2 Two types of predicting the future: Martingale and Exponential Smoothing......................15
4.5.3 Types of regression models used for forecasting.................................................................15
4.5.4 One-Step-Ahead Forecasting and its forecast interval.........................................................16
4.5.5 Granger causality.................................................................................................................16
4.5.6 Comparing one-step-ahead forecasts..................................................................................17
4.5.7 Multi-step-ahead forecasts..................................................................................................17
4.5.8 Forecasting trending, seasonal and integrated processes...................................................19
13 Pooling cross sections across time: Panel Data methods.................................................................19
4.6 Obtaining pooled cross-sectional data by adding time dummies...............................................19
4.6.1 The intuition........................................................................................................................19

, 4.6.2 Using the Chow test.............................................................................................................20
4.7 Difference-in-difference estimators............................................................................................22
4.7.1 The intuition........................................................................................................................22
4.7.2 Obtaining the variable through a regression analysis..........................................................22
4.7.3 How this relates to natural experiments..............................................................................24
4.8 Two-period panel data analysis..................................................................................................24
4.8.1 Pooled OLS and OVB............................................................................................................24
4.8.2 Controlling for time-unspecific factors................................................................................25
4.9 Policy analysis with two-period data..........................................................................................26
4.10 Differencing with more than two time periods.........................................................................26
4.10.1 Using a Chow test on this type of differencing..................................................................26
5 Advanced panel data methods..........................................................................................................28
5.1 Fixed effects estimation..............................................................................................................28
5.1.1 How this estimation works..................................................................................................28
5.1.2 Including dummies in fixed estimator regression................................................................28
5.1.3 To first-difference or to demean?........................................................................................29
5.1.4 What happens to fixed effects with unbalanced panels......................................................29
5.2 Random effects models..............................................................................................................29
5.2.1 The intuition........................................................................................................................29
5.2.2 The composite error term and serial correlation.................................................................30
5.2.3 Implications of using the theta............................................................................................31
5.2.4 To random effects or not to random effects........................................................................31
5.3 The correlated random effects approach...................................................................................31
9 More specification on data issues.....................................................................................................32
9.2 Using proxy variables for unobserved explanatory variables.....................................................32
9.4 Measurement errors...................................................................................................................33
5.3.1 Measurement errors in the dependent variable..................................................................33
5.3.2 Measurement errors in the independent variable...............................................................33
15 Instrumental Variables Estimation and 2SLS....................................................................................35
5.4 Identifying the instrumental variable (IV)...................................................................................35
5.4.1 Finding the right IV..............................................................................................................35
5.4.2 How the IV works.................................................................................................................35
5.4.3 Using instrumental variables to infer...................................................................................36
5.4.4 What happens when you use a bad instrumental variable..................................................36
5.5 Using IV in multiple regression...................................................................................................36
5.6 Two stage least squares..............................................................................................................37

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Merijnvan. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  19x  verkocht
  • (1)
In winkelwagen
Toegevoegd