ANOVA (Analysis of Variance):
• Independent Variable(s): Categorical (nominal) variables that has more than 2
categories (e.g., groups or categories).
• Dependent Variable: Continuous (interval/ratio) variable.
Partial Correlation:
• Independent Variable: Continuous (interval/ratio) variable.
• Dependent Variable: Continuous (interval/ratio) variable.
• Control Variable: Continuous (interval/ratio) variable (the variable being
controlled for).
Semi-Partial Correlation:
• Independent Variable: Continuous (interval/ratio) variable.
• Dependent Variable: Continuous (interval/ratio) variable.
• Control Variable: Continuous (interval/ratio) variable (the variable being
controlled for, but only in relation to one of the variables).
Bivariate Regression:
• Independent Variable: Continuous (interval/ratio) variable (or categorical if
using dummy coding).
• Dependent Variable: Continuous (interval/ratio) variable.
Multiple Regression:
• Independent Variable(s): a large number of continuous (interval/ratio) variables
(or categorical if using dummy coding).
• Dependent Variable: Continuous (interval/ratio) variable.
Linear regression:
• One continuous dependent variable Y
• And one or more continuous (or Dummy) independent variables X
Logistic regression
• Dichotomous dependent variable (die or not die, pregnant or not)
, • ANOVA: Used to compare means across multiple groups and assess whether
any of those means are statistically significantly diIerent from each other.
• Pearson Correlation: Measures the strength and direction of the linear
relationship between two continuous variables.
• Partial Correlation: Assesses the relationship between two variables while
controlling for the influence of a third variable, helping to clarify the nature of
the association.
• EIect Size: Important for understanding the practical significance of results,
not just statistical significance.
Lecture 1 ANOVA
You will learn …
¨ in which situation ANOVA is applicable
¨ what hypotheses can be tested with ANOVA
¨ the key logic behind ANOVA
¨ how to calculate the deviations from the mean(s)
Y= dependent variable
X= independent variable
Systematic error = taking other variables into account
Random = taking other variables not into account (can’t explain the fluctuation)
, • Substantive hypothesis: A person’s degree of organizational commitment (Y)
depends on the team in which the person works (X)
o Team = categorical level
Team in which someone works (X) (independent) ---à Organizational Commitment (Y)
(dependent)
o Question: if the hypothesis is correct, what would you expect to find with
regard to diIerences in average commitment between the teams?
§ DiIerent means
o Imagine that we have collected data of measurements of organizational
commitment for 3 teams
o 2 scenarios with regard to the data...
Key idea of ANOVA is:
• When there are 2 or more groups, can we make a statement about possible -
significant- diIerences between the mean scores of the groups?
• Intermezzo: What could we do if there were only 2 groups?
o (Answer: t-test)
Fundamental principle of ANOVA:
ANOVA analyses the ratio of the two components of total variance in data:
between-group (group means) variance and within-group variance
information on variance of average scores between groups
information on variance of scores within groups
OR
ANOVA analyses ratio in which:
• between-group variance measures systematic diIerences between groups and
all other variables that influence Y, either systematically or randomly (‘residual
variance’ or ‘error’)
and
age en income
o systematic: de gemeten variabelen en de random: ‘nog onbekende’
variables
, • within-group variance measures influence of all other variables that influence Y
either systematically or randomly (‘residual variance’ or ‘error’)
o andere variabele bijv education erbij doen
à verschillen in fertile soil zijn niet door de olie maar door een andere oorzaak bijv
genen.
Logic of Anova
Important to realize:
1. Any diIerences within a group cannot be due to diIerences between
the groups because everyone in a particular group has the same group
score; so, within-group diIerences must be due to systematic
unmeasured factors (e.g., individual diIerences) or random
measurement error
2. Any observed diIerences between groups are probably not only pure
between-group diIerences, but also diIerences due to systematic
unmeasured factors or random measurement error
systematic = there are no other unmeasured variables
Compare…
between-group variability (= systematic group e9ect + error/random)
to
within-group variability (= error/random)
… to learn about the size of the systematic group e9ect
We can speak of rejecting null hypothesis when there is at least 1 significance
(mean van groep 1= 3 en groep 2= 3 en groep 3 =9, we can reject null)
The more test we do, the alpha level gets larger (bijvoorbeeld 3 test is 0,05 x 100=
5%.x 3 = 15 procent of faults
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper StudyAssistant. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €25,49. Je zit daarna nergens aan vast.