100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Valuation and Risk Management Part I €8,45
In winkelwagen

Samenvatting

Summary Valuation and Risk Management Part I

 21 keer bekeken  1 keer verkocht

Summary Valuation and Risk Management given at Tilburg University in the first semester. (Quantitative Finance and Actuarial Sciences)

Voorbeeld 4 van de 38  pagina's

  • 9 december 2024
  • 38
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
rickprive611
Tilburg University

Master Program


Summary Valuation and Risk
Management

Supervisor:
Author:
Hambel, C
Rick Smeets
Schweizer, N

December 9, 2024

,Table of Contents
1 Introduction to Financial Modeling 2
1.1 Discrete vs. Continuous Time Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fundamentals from Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Generic State Space Model 7
2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 No Arbitrage and the First FTAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Numéraire-dependent Pricing Formula . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Replication and the Second FTAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The PDE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Contingent Claim Pricing 18
3.1 Black Scholes Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 The Fastest Way to the Black-Scholes Formula . . . . . . . . . . . . . . . . . 19
3.1.2 A Double-Barrier Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Option Pricing in Incomplete Markets . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Calibration vs. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Fixed Income Modeling 22
4.1 Bonds and Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Interest Rates and Interest Rate Derivatives . . . . . . . . . . . . . . . . . . . . . . 23

5 Short Rate Models for the TSIR 29
5.1 Benchmark: Vasicek Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Affine Term Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Empirical Models 32
6.1 The Nelson-Siegel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 The Nelson-Siegel-Svensson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 LIBOR Market Model and Option Pricing 34

8 Credit Risk 36




1

,1 Introduction to Financial Modeling
1.1 Discrete vs. Continuous Time Modeling
When considering a discrete time setting with time horizon T , we denote

t ∈ {0, ∆t, 2∆t, . . . , (n − 1)∆t, |{z}
n∆t} = {i∆t | i = 0, . . . , n}
=T

Furthermore, we can define continuous time as a limit of discrete time, that is, ∆t → 0 as n → ∞:

t ∈ [0, T ]

A risk-free asset (a bond) paying a constant interest rate is given by

Bt+∆t = Bt (1 + r · ∆t)

with returns defined by
∆Bt+∆t
= r · ∆t
Bt
A risky asset (a stock) is modeled by
√ i.i.d.
St+∆t = St (1 + µ · ∆t + σ · νt+∆t · ∆t), νt+∆t ∼ N (0, 1)

Note that µ stands for the expected rate of return (drift) and σ defines volatility. It holds that
µ > r and hence µ − r > 0 defines the risk premium. Returns are defined as
∆St+∆t √
= µ · ∆t + σ · νt+∆t · ∆t
St
Since returns are not necessarily bounded from below by -1, this means that asset prices can be
negative. We solve this issue by modeling log-returns Lt , and take the exponential:

St+∆t = St e∆Lt+∆t

For the risk-free asset we now have that
 
r·∆t Bt+∆t
Bt+∆t = Bt e ⇔ r∆t = ln = ∆ ln Bt+∆t
Bt
and the risky asset is now modeled as

∆Lt+∆t = ln(St+∆t ) − ln(St )

 
1 2 i.i.d.
= µ − σ ∆t + σ · νt+∆t · ∆t, νt+∆t ∼ N (0, 1)
2
Now, we take the limit to continuous time, i.e., let n → ∞ while keeping the time horizon constant,
i.e., ∆t = Tn → 0. Then, the final stock price ST is modeled using a product of exponentials of log
returns, simplified through several steps:
n−1
Y
ST = S0 e∆L(i+1)∆t
i=0


2

, This expression can be expanded and simplified as
( n−1  )


X 1 2
ST = S0 exp µ − σ ∆t + σ · ν(i+1)·∆t ∆t
i=0
2

Now using the fact that T = n · ∆t we can write
( √ n
)
n √ X

1 2
ST = S0 exp µ − σ T + σ · √ · ∆t νi∆t
2 n i=1
( n
)


1 2 1 X
= S0 exp µ− σ T +σ· T × √ νi∆t
2 n i=1

Using the CLT,
n
1 X d
√ νi∆t → ZT ∼ N (0, 1) as n → ∞
n i=1
Thus, the stock price in the limit becomes:

  
d 1 2
ST → S0 exp µ − σ T + σ · T · ZT
2
In the limit, under i.i.d. returns, the log return is normally distributed

 
1 2
LT = L0 + µ − σ T + σ · T · ZT
2
Consequently, using the properties of a log-normal distribution, we have that in the limit, the stock
price ST is log-normally distributed with

mean: E[ST ] = S0 eµ·T
 
σ2 T
variance: Var(ST ) = S02 e2µ·T e −1

This means that any discrete-time model converges to a log normal distribution if and only if we
have i.i.d. innovations such that the CLT can be applied.

Regarding trading in discrete time, assume a frictionless financial market. This means the market
operates without any transactional hindrances like taxes, transaction costs, or regulatory con-
straints such as short-selling limits. We define vector notations:
(i) m: the number of basic assets.

(ii) Yt : an m-dimensional vector representing the prices of these assets at any time t.

(iii) ϕt : a vector denoting the number of units of assets held at time t.
The value of the portfolio Vt at any time t is calculated by taking the dot product of the quantity
of assets held (ϕt ) and the current asset prices (Yt ):
m
X
Vt = ϕ′t Yt = ϕi,t Yi,t
i=1


3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper rickprive611. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,45. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53068 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,45  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd