Lecture – Advanced Research
Methods
Inhoudsopgave
Lecture 1 – Introduction to causal inference...................................................................1
Knowledge video 1 – DAG (Directed Acyclic Graphs)...................................................8
Lecture 2 – OLS and moderations.................................................................................10
Knowledge video 2: OLS regression...........................................................................13
Knowledge Video 3 – Logistic Regression..................................................................13
Knowledge Video 4 – OLS vs. Logistic Regression......................................................15
Knowledge Video 5 – Table 2 Fallacy..........................................................................16
Lecture 3 – OLS and Logistic Regression.......................................................................18
Lecture 4 – Qualitative Methods...................................................................................20
Knowledge video 6 – Discourse analysis in healthcare..............................................21
Knowledge video 7 – Taking discourse into analysis into the field.............................22
Knowledge Video – Ethnography in healthcare research..............................................23
Lecture – Organizational ethnography..........................................................................24
How to assess quality in qualitative research...............................................................25
Lecture 1 – Introduction to causal inference
Learning Goals:
Why examine (statistical) associations?
1. Descriptions: patterns X and Y
2. Predicition: Y given X (characteristics of something on the research
question (RQ))
3. Causal inference: Effect X on Y
,Example
Would you buy this foundation or not?
- Small sample size (n=41)
Is it always a problem?
not always, depends on what you want to know.
- Study performed or financed by commercial company
Is this a problem? Not always, but it can be frowned
upon. Make sure to have a contract which says you can
publish anything, positive and negative
- No control group
Is it a problem?
Essential data is missing, what would happen
without treatment, potential regression to the mean
What do we want to know in causal inreference:
- We are not interested in the outcome (Y, 70% less imperfections) but
- We are interested in the role of the treatment (X, without the
foundation) in achieving this outcome
Conclusion
- We do not have that information
- No causal claim can be made base on L’Oréal study
Causal effect
Formal definition by Hernan and Robins (2020)
In an individual, a treatment has a causal effect if the outcome
under treatment 1 would be different from the outcome under treatment
2.
To assess this, we need information on:
what would have happened, had this not happened
Assume that we have this information in relation to the foundation study:
- Woman A treated with the foundation: 2 bad spots
- Had Woman A not been treated with the foundation: 5 bad spots
Individual treatment effect: -3 spots (or 60% less imperfections)
Average treatment effect: average of individual effects in a population
Formal notation of a causal effect:
Y = outcome
A = treatment
, i = individual
1 = yes (received treatment)
0 = no (received no treatment)
Does not equal
Not all potential outcomes are observed
- Counterfactual outcome: potential outcome that is not observed
because the subject did not experience the treatment (counter the
fact)
- Potential outcome is factual (or observed) for some subjects, and
counterfactual (or not observed) for others
Fundamental problem in causal inference
Individual causal effect cannot be observed:
- No information on counterfactual
- Except under extremely strong (and generally unreasonable)
assumptions
Average causal effect cannot be determined based on individual estimates
- Causal inference as a missing data problem
So, we need a different approach to estimate causal effects.
Identifiability conditions
Average causal effect van be determined if, and only if, 3 identifiability
conditions are met:
1. Positivity
2. Consistency
3. Exchangeability
If all conditions are met (and an association is found in the data), the
association between exposure and outcome is an unbiased estimate of a
causal effect and you can make a causal claim
Positivity
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jaenevanleest. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,26. Je zit daarna nergens aan vast.