Causal Analysis Techniques
Lecture 1: One-Way Between-Subjects Analysis of Variance
(ANOVA)
Lecture objectives
- In which situation ANOVA is applicable
- What hypotheses can be tested with ANOVA
- The key logic behind ANOVA
- How to calculate the deviations from the mean(s)
Logic of ANOVA
Substantive hypothesis: A person’s degree of organizational commitment (Y) depends on the
team in which the person works (X).
Team in which someone works (X) Organizational Commitment (Y)
- Question: if the hypothesis is correct, what would you expect to find with regard to
differences in average commitment between the teams?
- Imagine that we have collected data of measurements of organizational commitment
for 3 teams.
- 2 scenarios with regard to the data.
In which of the data scenarios would you be more inclined to conclude that there is a
connection between the team in which someone works and organizational commitment?
,Key idea of ANOVA: when there are 2 or more groups, can we make a statement about
possible – significant – differences between the means scores of the groups?
Intermezzo: What could we do if there were only 2 groups? → Answer: t-test
Fundamental principle of ANOVA
ANOVA analyses the ratio of the two components of total variance in data: between-group
variance and within-group variance.
,Fundamental principle of ANOVA
ANOVA analyses ratio in which between-group variance measures systematic differences
between groups and all other variables that influence Y, either systematically or randomly
(‘residual variance’ or ‘error’)
And
Within-group variance measures influence of all other variables that influence Y either
systematically or randomly (‘residual variance’ or ‘error’)
Important to realize
1. Any differences within a group cannot be due to differences between the groups
because everyone in a particular group has the same group score; so, within-group
differences must be due to systematic unmeasured factors (e.g. individual
differences) or random measurement error.
2. Any observed differences between groups are probably not only pure between-group
differences, but also differences due to systematic unmeasured factors or random
measurement error.
Compare…
Between-group variability (= systematic group effect + error)
To
Within-group variability (= error)
… to learn about the size of the systematic group effect
Example from biology
Statistical null hypothesis of one-way between-subjects ANOVA:
Mean scores of k population populations corresponding to the groups in the study are all
equal to each other:
, When do we reject H0? → When at least one mean is significantly different from the other
means.
Intermezzo
Why prefer One-Way Between-Subjects ANOVA instead of separate t-tests for means
(Warner I, p. 390).
In our example with 3 teams, we could also conduct 3 separate t-tests for means:
- Problem of this approach: the larger the number of test that is applied to a dataset,
the larger the chance of rejecting the null hypothesis while it is correct (Type I error).
- Why? Follows from logic of hypothesis testing: we reject the null hypothesis if a result
is exceptional, but the more tests we conduct, the easier it is to find an exceptional
result
- One will easier make the mistake of concluding that there is an effect, while there is
not
- This is called: ‘inflated risk of Type I error’ (Warner I, p. 390)
Formula for calculation of chance of 1 or more Type I errors in a series of C tests with
significance level 𝛼:
Therefore, with 3 separate tests with 𝛼 = 0.05 the chance of unjustified rejection of the null
hypothesis is:
Solution: One-Way ANOVA → one single omnibus test for the null hypothesis that the
means of K populations are equal, with chance of Type I error = 0.05.
Calculations: F-statistic
If we want to test the statistical null hypothesis
with an ANOVA, the F-distribution is used.
In order to determine if a specific sample result is exceptional (‘significant’) under the
assumption that the statistical null hypothesis is correct, the test-statistic F has to be
calculated.
Calculations: Deviations
Strategy: Partition of scores into components
- Component of score that is associated with ‘group’
- Component of score that is not associated with ‘group’
How can you do this? Calculate deviation scores
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper deGraauw. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €11,16. Je zit daarna nergens aan vast.