100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Multi-Agent Systems - Summary Slides Lecture 1 and 2 €4,99
In winkelwagen

Samenvatting

Multi-Agent Systems - Summary Slides Lecture 1 and 2

 2 keer bekeken  0 keer verkocht

A summary of lecture 1 and 2 slides for the course Multi-Agent Systems.

Voorbeeld 3 van de 24  pagina's

  • 30 december 2024
  • 24
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (7)
avatar-seller
tararoopram
Lecture 1 - Introduction
What is an Agent?
● An agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its delegated objectives




● Note: autonomy is a spectrum!

Multi-Agent Systems, a Definition
● A Multi-Agent System is one that consists of a number of agents that interact (with each
other and the environment)
● In general, agents will have different goals (often conflicting!)
● To successfully interact, they will have to learn, cooperate, coordinate, and negotiate

Agents and Environment




Motivations for studying MAS
● Techological:
○ Growth of distributed, networked computer systems
■ (computers act more as individuals than parts)
○ Robustness: no single point of failure
○ Scalable and flexible:
■ adding new agents when needed
■ asynchronous, parallel processing
○ Development and reusability
■ components developed independently (by specialists)
● Scientific:
○ Models for interactivity in (human) societies,
■ e.g. economics, social sciences
○ Models for emergence of cooperation


1

, ■ Coordination: cooperation among non-antagonistic agents
■ Negotiation: coordination among self-interested agents

Application: Robotics
● Robots as Physical Agents (Embodiment)
○ Internet of Things (IoT)
○ Swarms of drones,
○ Fleet of autonomous vehicles
○ Physical internet

Multiagent Systems: typical scientific questions addressed
● How can cooperation emerge in societies of self-interested agents?
● What actions should agents take to optimize their rewards/utility?
● How can self-interested agents learn from interaction with the environment and other
agents to further their goals?
● How can autonomous agents coordinate their activities so as to cooperatively achieve
goals?

MAS as Distributed AI (DAI)
● AI : Cognitive processes in individuals
○ Inspiration: neuro-science, behaviourism, ...
● DAI: Social processes in groups
○ Inspiration: social sciences, economics, ....
● Basic question in DAI
○ How and when should which agents interact (compete or collaborate) in order to
achieve their design objectives?
● Approaches:
○ Bottom-up: given specific capabilities of individual agents, what collective
behaviour will emerge?
○ Top-down: Search for specific group-level rues (e.g., conventions, norms, etc.)
that successfully constrain or guide behaviours at individual level;

Multiagent Systems is Interdisciplinary
● The field of Multi-Agent Systems is influenced and inspired by many other fields:
○ Economics
○ Game Theory
○ Philosophy and Logic
○ Mathematics (e.g. optimal control)
○ Ecology
○ Social Sciences
● This can be both a strength and a weakness
● This has analogies with Artificial Intelligence itself




2

, Intelligent Agents
● An intelligent agent is a computer system capable of flexible autonomous action in some
environment
● Autonomous: not pre-determined by designer
● By flexible, we mean:
1. Reactive (able to receive information from environment and respond)
2. Pro-active able to reason and/or learn and work towards goals)
3. Social (able to communicate, coordinate, negotiate and cooperate)

Simple Typology for Intelligent Agents
● Intelligence in agents covers a spectrum:
● Reflex agents
○ Simple reflex agents
○ Model-based reflex agents
● Goal based agents
● Utility based agents
● Learning agents

Type 1: Simple Reflex Agent
● Reacts to environment
○ Percept → Action
○ Based on simple if-then rules
(condition-action)
● Properties:
○ No state: ignore history
○ Pre-computed rules
○ NO Partial observability

Type 2: Model-Based Reflex Agent
● Reflex agent with state
● Agent uses memory to store an internal representation of its world
● Internal model based percept history
● This internal model allows him to handle partially observable environment

Type 3: Goal-Based Agent
● Goal = desired outcome
● Goal-based (planning) agents act by reasoning about which actions to achieve the goal
● Less efficient, but more adaptive and flexible
● Search and planning: AI subfields concerned with finding sequences of actions to reach
goal.




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tararoopram. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99
  • (0)
In winkelwagen
Toegevoegd