100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Machine Learning for the Quantified Self - Summary Slides €9,99
In winkelwagen

Samenvatting

Machine Learning for the Quantified Self - Summary Slides

 2 keer bekeken  0 keer verkocht

A summary of all the slides for the course Machine Learning for the Quantified Self, MSc AI.

Voorbeeld 4 van de 48  pagina's

  • 30 december 2024
  • 48
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
tararoopram
Machine Learning for the Quantified Self - Slides Summary


Lecture 1: Introduction and Basics of Sensory Data
Quantified Self definition
●​ Term first coined by Gary Wolf and Kevin Kelly in Wired Magazine
●​ Swan (2013): “The quantified self is any individual engaged in the self-tracking of any
kind of biological, physical, behavioral, or environmental information. There is a proactive
stance toward obtaining information and acting on it.”
●​ We: “The quantified self is any individual engaged in the self-tracking of any kind of
biological, physical, behavioral, or environmental information. The self-tracking is driven
by a certain goal of the individual with a desire to act upon the collected information.”

Quantified Self: measurements
●​ Augemberg (2012):




Quantified Self: why?
●​ Choe, 2014:
○​ Interview with 52 quantified selves
○​ Three categories:
■​ Improved health (cure or manage a condition, execute a treatment plan,
achieve a goal)
■​ Improve other aspects of life (maximize work performance, be mindful)
■​ Find new life experiences (have fun, learn new things)
●​ Gimpel, 2013:
○​ Identify “Five-Factor Framework of Self-Tracking Motivations”:
■​ Self-healing (become healthy)
■​ Self-discipline (rewarding aspects of it)
■​ Self-design (control and optimize “yourself”)
■​ Self-association (associated with movement)
■​ Self-entertainment (entertainment value)




1

,Machine Learning for the Quantified Self - Slides Summary


Quantified Self: Arnold and Bruce
●​ Use two running examples
○​ Arnold:
■​ Loves sports
■​ Wants to participate in IRONMAN
■​ Gadget freak
■​ Smart phone/watch/...
■​ Electronic scale
■​ Chest strap
■​ …...
○​ Bruce:
■​ Diabetic
■​ Susceptible for depression
■​ Smart watch
■​ Device to measure blood glucose level
■​ ......

Moving on the machine learning
●​ Machine learning: “Machine learning is to automatically identify patterns from data”
●​ What could we learn for Arnold and Bruce?
○​ Arnold:
■​ Advising the training to make most progress towards a certain goal based
on past outcomes of training.
■​ Forecasting when a certain running distance will be feasible based on the
progress made so far and the training schedule.
○​ Bruce:
■​ Predict the next blood glucose level based on past measurements and
activity levels.
■​ Determine when and how to intervene when the mood is going down to
avoid a spell of depression.
■​ Finding clusters of locations that appear to elevate one’s mood.

Why is the Quantified Self so different?
●​ Sensory noise
●​ Missing measurements
●​ Temporal data
●​ Interaction with a user
●​ Learn over multiple datasets




2

,Machine Learning for the Quantified Self - Slides Summary


Basic Terminology
●​ A measurement is one value for an attribute recorded at a specific time point.




●​ A time series is a series of measurements in temporal order.




●​ Machine learning terminology is assumed to be known, for your convenience:
○​ Supervised learning is the machine learning task of inferring a function from a
set of labeled training data
○​ In unsupervised learning, there is no target measure (or label), and the goal is
to describe the associations and patterns among the attributes
○​ Reinforcement learning tries to find optimal actions in a given situation so as to
maximize a numerical reward that does not immediately come with the action but
later in time

Mathematical notation




3

, Machine Learning for the Quantified Self - Slides Summary


Overview of the course




Dataset
●​ During the course we will use a running example provided by CrowdSignals.io
●​ People share their mobile sensor data (smart phone and smart watch) and get paid for
annotating their data with activities




Mobile phone measurements (examples)
●​ Accelerometer
○​ Measures the changes in forces upon the phone in the x-y-z plane
●​ Gyroscope
○​ Orientation of the phone compared to the earth’s surface
●​ Magnetometer
○​ Measures x-y-z orientation compared to the earth’s magnetic field




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tararoopram. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €9,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€9,99
  • (0)
In winkelwagen
Toegevoegd