100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Knowledge and Data - Slides Summary €12,99
In winkelwagen

Samenvatting

Knowledge and Data - Slides Summary

 4 keer bekeken  0 keer verkocht

A summary of all the slides for the course Knowledge and Data, BSc AI.

Voorbeeld 4 van de 56  pagina's

  • 3 januari 2025
  • 56
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
tararoopram
Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Module 1: Formal foundations of knowledge graphs

Data, knowledge and information
● Data (raw data) = individual facts that are out of context, have no meaning and are difficult to
understand
● Information = set of data in context with relevance to one or more people at a point in time or for
a period of time
● Knowledge = the factor condition of knowing something with familiarity gained through
experience or association
● Knowledge is information that has been retained with an understanding of the significance of that
information

Knowledge can either be tacit or explicit:
● Tacit (or implicit) knowledge = knowledge that a person retains in their mind
○ intangible, invisible, basic, hidden “underwater” (80%)
● Explicit (or formal) knowledge = knowledge that has been formalized, codified and
stored
○ Tangible, visible, public, can be accessed by third persons, once shared it belongs
to everyone, can be seen “above the water” (20%)

Formal knowledge is necessary to efficiently interpret and reuse data




According to Forbes, data scientists usually spent more time on preparing, linking and cleaning data than
on building the datasets in the first place.




1

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2




Knowledge Graphs
● In many cases, the knowledge the data is about should be made more explicit
● More knowledge/semantics:
○ Domain and range
○ Subclasses

Formally representing knowledge graphs
● A language is needed to write down the knowledge graph unambiguously
● Correct “statements” need to be defined precisely in order to interpret them
● What these “statements” are supposed to mean need to be defined
● What can be derived from the graph needs to be defined
→propositional logic

Propositional logic as a formal system
● A declarative sentence or proposition = statement that is true or false
● Three elements:
○ Syntax
○ Semantics
○ Calculus
● Symbols of propositional logic




2

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


● Standard syntax




● Different syntaxes
○ There might be different ways to write down the same formulas
○ Examples:
■ Different symbols for the operators
● (((A | B) & C) -> (-D))
■ Leave out parentheses
● (A | B) & C -> -D
■ Different order
● Prefix
● Prefix syntax = syntax which starts with the operators and then the arguments
○ Inductive definition: a formula is a list starting with the operator and then containing all
the formulas to which the operator applies.
● Truth Value Semantics
○ Formulas of propositional logic are used to express declarative statements which are
either true (T) or false (F)
○ The truth value of a composite formula like Φ ∧ Ψ determined by the truth values of its
components Φ and Ψ.
○ For each connective, this functional behavior is expressed by its truth table.




● For a formula with n variables, 2n lines are in the truth table
● Formulas Φ and Ψ are semantically equivalent, notation Φ ≡ Ψ, if they have identical
columns in their truth tables
● A formula is a tautology if its column in a truth table has T on every line
● A formula is a contradiction if its column in a truth table has F on every line
● Semantic entailment: always if the premises Φ1…., Φn are true, then the conclusion Ψ is
true as well.
○ “Always”: in every line of the corresponding truth table




3

, Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Formal systems
● What is a logic?
○ A formal language
○ Syntax: which expressions are legal (well-formed)?
○ Semantics: what legal expressions mean, the meaning of each sentence w.r.t.
interpretation
○ Calculus: how to determine meaning for legal expressions
● A logic of arithmetic: syntax
○ Unambiguous definitions of what sentences are well-formed
■ 2 terms with a comparator between them (=, <, > <=, >=)
■ A term is either a Natural Number, a variable or a complex term
■ A complex term is an operator +, -, *, / applied to two terms
■ Infix notation with parentheses “(term1 operator term2)”
● E.g., X + 2 >= Y and NOT X2 + Y
○ No ambiguity
■ 7+3+5 = 2x - 3 is not well-formed unless there is agreement (convention) that
means (7+3) + 5 = (2*X) - 3

● A logic of arithmetic: semantics
○ Truth is defined in terms of assignment for variables
○ Let V be the set of variables, then Iv: V → N is an assignment, a function that assigns
natural numbers to each variable
○ ! For specific values we say that Iv is a model of a formula F if Iv(F) is true.
○ ! A formula F entails another formula G (F |= G) if for all variable assignments Iv(F) is
true implies that Iv(G) is true. In other words, F entails G if G is true in all models of F.
● A logic of concept hierarchies: syntax
○ A concept is “an abstraction or generalization from experience or the result of a
transformation of existing ideas”.
○ Syntax
■ Let C be a fine set of concept names.
■ If c1 and c2 in C, then (c1 subclassOfc2) is an axiom in LCH
■ An LCH knowledge base is a set of LCH axioms.
● Examples: (Lions subclassOf Mammals) and (Capital subclassOf City) If
(Lions subclassOf Mammals) and (Mammals subclassOf Animals), we
want to derive that (Lions subclassOf Animals)
● A logic of concept hierarchies: semantics
○ Let U be a universe, a set of arbitrary objects. Ic: C → P(U) is a function that assigns
subsets of the domain to concept names.
○ An axiom (c1 subclassOfc2) is true w.r.t. an assignment if Ic (c1) ⊆Ic(c2). Ic is then called
a model for the axiom.
○ An assignment is a model of a knowledge base if it is a model of all its axioms
○ An axiom (c1 subclassOfc2) is entailed by a knowledge base KB if it is true in all models
of KB.


4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tararoopram. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €12,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48756 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€12,99
  • (0)
In winkelwagen
Toegevoegd