100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Knowledge and Data - Slides Summary

Beoordeling
-
Verkocht
-
Pagina's
56
Geüpload op
03-01-2025
Geschreven in
2020/2021

A summary of all the slides for the course Knowledge and Data, BSc AI.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 januari 2025
Aantal pagina's
56
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Module 1: Formal foundations of knowledge graphs

Data, knowledge and information
● Data (raw data) = individual facts that are out of context, have no meaning and are difficult to
understand
● Information = set of data in context with relevance to one or more people at a point in time or for
a period of time
● Knowledge = the factor condition of knowing something with familiarity gained through
experience or association
● Knowledge is information that has been retained with an understanding of the significance of that
information

Knowledge can either be tacit or explicit:
● Tacit (or implicit) knowledge = knowledge that a person retains in their mind
○ intangible, invisible, basic, hidden “underwater” (80%)
● Explicit (or formal) knowledge = knowledge that has been formalized, codified and
stored
○ Tangible, visible, public, can be accessed by third persons, once shared it belongs
to everyone, can be seen “above the water” (20%)

Formal knowledge is necessary to efficiently interpret and reuse data




According to Forbes, data scientists usually spent more time on preparing, linking and cleaning data than
on building the datasets in the first place.




1

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2




Knowledge Graphs
● In many cases, the knowledge the data is about should be made more explicit
● More knowledge/semantics:
○ Domain and range
○ Subclasses

Formally representing knowledge graphs
● A language is needed to write down the knowledge graph unambiguously
● Correct “statements” need to be defined precisely in order to interpret them
● What these “statements” are supposed to mean need to be defined
● What can be derived from the graph needs to be defined
→propositional logic

Propositional logic as a formal system
● A declarative sentence or proposition = statement that is true or false
● Three elements:
○ Syntax
○ Semantics
○ Calculus
● Symbols of propositional logic




2

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


● Standard syntax




● Different syntaxes
○ There might be different ways to write down the same formulas
○ Examples:
■ Different symbols for the operators
● (((A | B) & C) -> (-D))
■ Leave out parentheses
● (A | B) & C -> -D
■ Different order
● Prefix
● Prefix syntax = syntax which starts with the operators and then the arguments
○ Inductive definition: a formula is a list starting with the operator and then containing all
the formulas to which the operator applies.
● Truth Value Semantics
○ Formulas of propositional logic are used to express declarative statements which are
either true (T) or false (F)
○ The truth value of a composite formula like Φ ∧ Ψ determined by the truth values of its
components Φ and Ψ.
○ For each connective, this functional behavior is expressed by its truth table.




● For a formula with n variables, 2n lines are in the truth table
● Formulas Φ and Ψ are semantically equivalent, notation Φ ≡ Ψ, if they have identical
columns in their truth tables
● A formula is a tautology if its column in a truth table has T on every line
● A formula is a contradiction if its column in a truth table has F on every line
● Semantic entailment: always if the premises Φ1…., Φn are true, then the conclusion Ψ is
true as well.
○ “Always”: in every line of the corresponding truth table




3

, Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Formal systems
● What is a logic?
○ A formal language
○ Syntax: which expressions are legal (well-formed)?
○ Semantics: what legal expressions mean, the meaning of each sentence w.r.t.
interpretation
○ Calculus: how to determine meaning for legal expressions
● A logic of arithmetic: syntax
○ Unambiguous definitions of what sentences are well-formed
■ 2 terms with a comparator between them (=, <, > <=, >=)
■ A term is either a Natural Number, a variable or a complex term
■ A complex term is an operator +, -, *, / applied to two terms
■ Infix notation with parentheses “(term1 operator term2)”
● E.g., X + 2 >= Y and NOT X2 + Y
○ No ambiguity
■ 7+3+5 = 2x - 3 is not well-formed unless there is agreement (convention) that
means (7+3) + 5 = (2*X) - 3

● A logic of arithmetic: semantics
○ Truth is defined in terms of assignment for variables
○ Let V be the set of variables, then Iv: V → N is an assignment, a function that assigns
natural numbers to each variable
○ ! For specific values we say that Iv is a model of a formula F if Iv(F) is true.
○ ! A formula F entails another formula G (F |= G) if for all variable assignments Iv(F) is
true implies that Iv(G) is true. In other words, F entails G if G is true in all models of F.
● A logic of concept hierarchies: syntax
○ A concept is “an abstraction or generalization from experience or the result of a
transformation of existing ideas”.
○ Syntax
■ Let C be a fine set of concept names.
■ If c1 and c2 in C, then (c1 subclassOfc2) is an axiom in LCH
■ An LCH knowledge base is a set of LCH axioms.
● Examples: (Lions subclassOf Mammals) and (Capital subclassOf City) If
(Lions subclassOf Mammals) and (Mammals subclassOf Animals), we
want to derive that (Lions subclassOf Animals)
● A logic of concept hierarchies: semantics
○ Let U be a universe, a set of arbitrary objects. Ic: C → P(U) is a function that assigns
subsets of the domain to concept names.
○ An axiom (c1 subclassOfc2) is true w.r.t. an assignment if Ic (c1) ⊆Ic(c2). Ic is then called
a model for the axiom.
○ An assignment is a model of a knowledge base if it is a model of all its axioms
○ An axiom (c1 subclassOfc2) is entailed by a knowledge base KB if it is true in all models
of KB.


4
€12,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
2 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen