100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Statistics 1: Full lecture notes including additional examples! €5,48
In winkelwagen

Samenvatting

Summary Statistics 1: Full lecture notes including additional examples!

 7 keer bekeken  0 keer verkocht

This PDF includes: - Lecture notes . My notes are not just powerpoint notes, but instead full lecture notes including extra information. - Additional information and graphs/formulas used during the lecture. -Summary of the literature. -In some cases a Dutch translation of concepts. Writt...

[Meer zien]

Voorbeeld 4 van de 37  pagina's

  • 6 januari 2025
  • 37
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
juliadonna
Statistics 1 – Including summary literature, full lecture notes, key takeaways, examples, formulas.

- Lectures 0 – 9.
- Lecture 10 is the summary lecture and the notes are part of/included in lecture 0 -9.
- Seminar notes.
Note: only the decision tree is not written in this summary.

,Statistics 1 – Lecture notes + literature




Lecture 0 and 1:
Population → The group that you wish to describe (firms or people).
- The entire set of elements.
Sample → The group for which you have data (=limited).
- A subset of elements from the population, taken with the intention of
making inferences (=gevolgtrekkingen) about the population.

Why taking a sample? Too expensive, impossible, not sampling might be
destructive (example in physical geography) or impractical.
→Representative= make sense to a wider group=the population.

Parameter= numerical property of the population.
“We don’t know” How close is it towards each other?
Statistic= numerical property of a sample. = Representative?
“We know/we collected”.

= sampling error = a difference/ uncertainly arise between the value of a parameter and the statistic
computed to estimate that parameter. We are not 100% sure between those values. Result of:
- Variability (change).
- Sampling Bias.
- Nonsampling Error: Due to mistakes in the research process. Example: Use of wrong codes.

Reducing sampling error?
➢ Variability→ By increasing N (=size).
➢ Sampling Bias→ By design a sampling procedure.
➢ Nonsampling Error→ By:
- Validity, accuracy, precision of variables.
- Prevent coding errors.
- Prevent interpretation errors.
- Good labelling and metadata (use of R).

,Important concepts:
- Variability= repeated sampling form the same population results in different values for the
statistic. Less variability= more reliable= more inference to make conclusions.
- Sampling distribution= describes how the statistic varies when sampling is repeated.
In other words: Describes (extent of) variability.
= basis for inference (=gevolgtrekkingen)! →How good is the sample that it says something
about a population.

But: We can’t fully generalize sampling: Central Limit Theorem
→There is a difference between what we want and what we exactly do
- We may assume that…
- Under certain conditions….
- Such as a large number of cases and a fixed standard deviation
➔ The sampling distribution of the mean is approximately normal with standard error=

Normal distribution: Average/most values.
Less chance of values but not
impossible.




Sampling Bias= result of procedures which favour the inclusion, in your sample, of elements from the
population with certain characteristics. Different kinds or combination of:
- Population.
- Researcher: Personality, design and topic.
- Respondent.
May result in:
- Incomplete coverage: Relevant elements are not in the sampling frame.
- Nonresponse: Refusal or missing data.
Solution to reduce sampling bias= the 5 steps in the sampling process.

1= Define the population including time frame and geographical limit.
2= Ordered list of the individuals in a population.
- Include all individuals.
- Each individual element should only appear once.
Target population= set of all individual relevant to the study.
Sampled population= all the individuals listed in the sampling frame.
3= Procedure uses to select individuals from the sampling frame for the sample.
4= Making a pilot-sample/pretest to test the data collection procedures in advance. To check.
5= To minimize nonsampling error.

, Different types of samples:
- Probability samples: You don’t know/you have no control.
1. Simple random= you need access to everyone and pick up randomly and leave for the
sample. There’s an equal probability of being select.
2. Independent random= simple random with replacement. The one you pick up randomly
does not leave. Used in small populations.
3. Systematic= there is a rule involved. Example: Every 10th person is in the sample.
4. Stratified= divide into groups based on differences before sampling. To control the
sampling process, reduce sampling error and decrease likelihood of unrepresentative
samples. Example: Male-Female.
5. Cluster= divide into groups features. Each person in the cluster is almost the same.

- Nonprobability samples: You (researcher) choose who is in your sample.
Uses in de qualitative research since you need “special” people/perspectives.
1. Judgemental or purposeful= Personal judgement is used to decide who is in the sample.
These are the people who best serve the purpose of the sample according to you.
2. Convenience or accessibility= Only convenient or accessible members of the population.
3. Quota= specific categories/subgroups to obtain a representative sample of the
population. Based on bias.
4. Volunteer= individuals who self-select from the population. But: more motivated.




Geographic sampling: Based on space/spatial.
a. Traverse samples→ random lines through the map. Ony data on the line is in the sample.
b. Quadrat samples→ random little boxes are on the map. Only data in these boxes is in the
sample.
c. Point samples→ random points on the map. Only these datapoints are in the sample.

The categories can be divided into:
a. Random.
b. Systematic.
c. Stratified systematic within stratum(=lagen).
d. Stratified, random orientation.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper juliadonna. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 51662 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,48
  • (0)
In winkelwagen
Toegevoegd