100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Quantitative and Design Methods for Business Research €12,92
In winkelwagen

Samenvatting

Summary Quantitative and Design Methods for Business Research

 3 keer bekeken  0 keer verkocht

Summary of the course (all the 4 segments and the intro lecture) Quantitative and Design Methodology for Business Research

Voorbeeld 4 van de 45  pagina's

  • 11 januari 2025
  • 45
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (4)
avatar-seller
maudhunnego2000
Quantitative and Design Methods in Business
Research
1.Introduction Lecture
After this lecture you should be able to do the following

1. Explain what multivariate analysis is and when its application is
appropriate
2. Define and discuss the specific techniques included in multivariate
analysis
3. Determine which multivariate technique is appropriate for a specific
research problem
4. Discuss the nature of measurement scales and their relationship to
multivariate techniques
5. Describe the conceptual and statistical issues inherent in multivariate
analyses



Multivariate Data Analysis comprises all statistical methods that
simultaneously analyze multiple measurements of each individual or object
under investigation. Multivariate analysis refers to statistical methods
designed to examine relationships among multiple variables at the same
time.

Three key motivations for Multivariate analysis:

 Measurement
a. MVA is often used to measure relationships between variables
 Explanation & prediction
a. Multivariate methods help uncover patterns that explain
relationships between variables and enable prediction of
outcomes.
 Hypothesis testing
a. MVA is used to test hypotheses involving multiple variables
simultaneously


Multivariate Analysis is appropriate where:

1. Complex relationships exist: The data has multiple interrelated
variables, and you want to understand these relationships.

, 2. Dimensionality reduction is needed: High-dimensional datasets
make interpretation challenging, and you need to simplify while
retaining the key information.
3. Prediction models are required: Predicting an outcome using
multiple predictors
4. Categorization or grouping is needed: Identifying natural
groupings or categorizing data based on multiple variables.



Measurement scales in data are fundamental in statistical analysis because
they determine the type of data collected and the appropriate analytical
techniques to apply. There are two types of data, each with their distinct
measuring scales:

1. Nonmetric (qualitative) data: Nonmetric data represent categories
or ranks that describe a characteristic without measuring its
magnitude.

These scales are:

- Nominal scale: Used to label or classify items into
distinct categories. The numbers or labels assigned have
no inherent order or quantitative meaning.
1. Examples: Gender, Eye color, jersey numbers in
sports
2. Properties: No order or rank, Only equality and
distinction can be assessed (e.g., “equal” or “not
equal”.)

- Ordinal scale: Represents data with an inherent order or
ranking, but the intervals between ranks are not
consistent or meaningful.
1. Examples: Rankings in a competition, satisfaction
levels
2. Properties: Indicates order or relative position, does
not quantify “how much” more or less one level is
compared to another.

, 2. Metric (Quantitative) data: Metric data represent measurable
quantities, and the assigned numbers have meaningful mathematical
properties.

These scales are:

- Interval scale: A numerical scale with equal intervals
between values, but without a true zero point. Ratios of
values are not meaningful because zero does not
represent “nothing”.
1. Examples: Temperature, IQ scores
2. Properties: Equal differences between scale points,
no true zero; “zero” is arbitrary.

- Ratio scale: Contains all the properties of an interval
scale, plus a true zero point, allowing meaningful ratios.
1. Example: Weight, height, income, time, distance
2. Properties: Equal intervals between points, a true
zero exists, ratios are meaningful.

Measurement error
All variables are subject to some level of error, which can distort observed
relationships and reduce the effectiveness of multivariate techniques.
Measurement error occurs when the value measured (Xm) deviates from the
true value (Xt) due to the presence of error terms (E): X m=X t + ε

There are two types of error:

1. Random error (ε r): Unpredictable fluctuations that vary in magnitude
and direction, reducing precision but not necessarily introducing bias.
2. Systematic error ( ε s): Consistent inaccuracies that cause a deviation
in a specific direction, introducing bias in the measurements

The expended equation then is: X m=X t + ε r + ε s

To evaluate measurement error, researchers evaluate two critical properties
of measurements:

 Reliability:
o Refers to the precision or reproducibility of a measurement.
o A reliable measure produces consistent results when repeated
under the same conditions, indicating minimal random error.
 Validity:

, o Refers to the degree to which a measure accurately represents
the concept it is intended to measure.
o A valid measure ensures minimal systematic error, aligning the
measured value closely with the true value.

Reliability is necessary for validity, but reliability does not guarantee validity.

To mitigate the effect of measurement error,
researchers use summated scales. This involves combining multiple
measurements (by summing or averaging them) to form a composite
representation of a concept. The logic is that combining several imperfect
measures can reduce random error, enhancing the reliability of the overall
measure.

Ensuring reliability and validity is essential to:
 Strengthen data integrity
 Reduce bias in statistical modeling
 Enhance the interpretability of results

Statistical significance and power
Statistical significance and power are foundational concepts in hypothesis
testing. They help determine whether the results of a study are meaningful
and provide guidance for designing robust experiments.




Hypothesis testing involves two possible errors:
1. Type I error ():
o Occurs when the null hypothesis ( Η 0) is rejected even though it is
true.
o The probability of a Type I error is denoted by , commonly set at
0.05 (5%), meaning that there is a 5% chance of incorrectly
rejecting Η 0.
2. Type II error ():
o Occurs when the null hypothesis is not rejected, even though it is
false.
o The probability of Type II error is denoted by .
3. Power (1-):
o Refers to the probability of correctly rejecting the null hypothesis
when it is false.
o High power (e.g., 0.80) is desirable, as it means the study is
likely to detect an effect if it exists.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maudhunnego2000. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €12,92. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59063 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€12,92
  • (0)
In winkelwagen
Toegevoegd