Summary of slides of 0HM280: Human-Robot
Interaction
Lecture 1
Interaction scenario = Story which is a combination of simple actions to achieve a goal that
the user of a robot wants to accomplish.
Semantic world model = Meaningful description of the world.
Both meaningful and idle motions are similarly lifelike.
Meaningful motions make the robot appear more likeable, intelligent and emotionally
responsive.
Lecture 2
Robot navigation deals with uncertainties such as:
- Noisy sensors
- Outdated maps
- Unknown location
- Inaccurate odometry and dead reckoning
Filters are used to update these uncertainties
Fundamental notion of probability: We can assign real
numbers to a sample of a class of events.
Frequentist interpretation of probability: Frequency of occurrence.
Bayesian interpretation of probability: Probability is a graded belief about an event.
Random variables are used to represent an uncertain outcome.
Discrete
Continuous
X = Random variable. Can be a countable number {x1, x2, …, xn}.
P(X=xi) or P(xi) = The probability that the random variable X taken on the value xi.
P( ) =Probability mass function.
Binomial probability distribution = The number of ‘heads’ when tossing a coin n times;
probability of saying ‘yes’ in a 2AFC task.
Poisson distribution = Number of α particles emitted by a radioactive source; number of
spikes generation by a neuron.
P(X=x) or p(x) = Probability density function.
Uniform probability density
Normal / Gaussion probability density function
- Standard normal distribution μ=0, σ=1
- Random variable that follows a normal distribution
Exponential probability density function
, Often used to model lifetimes or waiting times (usually x is replaced by t in that case)
Continuous probability distributions
- Are densities
Most importantly:
Cumulative probability density function
Also called CDF
Related to practice exam.
Joint probability distribution = A probability mass/density function of more than 1 variable
is called a joint probability distribution.
Discrete: Pr(X=x and Y=y) --> P(x,y)
Continuous: Pr(a<X<b and c<Y<d) --> p(x,y)
If X and Y independent: P(x,y) = P(x) P(y)
Conditional probability = The probability of one variable X for given value of the other
variable Y.
Pr(X|Y=y) (Say probability X “given” Y=y)
It is clearly related to the joint probability with proper value of Y substituted P(X|Y) ∝
P(X,Y=y) .
Discrete:
Continuous:
Likelihood reflects sensory information.
Is a function of hypotheses
Likelihood p(observation | hypothesis)
Prior reflects prior knowledge about hypotheses.
Is independent of observations.
Posterior reflects belief in hypotheses.
, It takes prior knowledge into account.
Lecture 3
Bayes rule:
Interpretation
Considering a robot that wants to know whether a door is
open or not. Then:
P(open|z) is diagnostic
P(z|open) is causal
Often causal knowledge is easier to obtain.
Bayes rule relates causal and diagnostic knowledge in:
If z is updated, we get z1, z2 etc.
According to Markov assumption, zn is independent
of z1, …, zn-1 if we know x.
Often the world is dynamic since:
• Actions carried out by the robot,
• Actions carried out by other agents
• Or just the time passing by change the world.
Actions are never carried out with absolute certainty. They generally increase uncertainty.
To incorporate the outcome of an action u into the current belief, use the conditional pdf:
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper vop97. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.