100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Summary - Statistics Ia (PSBE1-08) Psychology €7,46
In winkelwagen

Samenvatting

Summary - Statistics Ia (PSBE1-08) Psychology

 0 keer verkocht

The summary is very detailed and includes information from both books, the lectures, and extra explanations where necessary to make sure all concepts are thoroughly understood.

Voorbeeld 3 van de 24  pagina's

  • 24 maart 2025
  • 24
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
mikemarcu
if you feel like it → paypal / buymeacoffee

, if you feel like it → paypal / buymeacoffee


Chapter 1 - Looking at Data - Distributions
1.1 Data
statistics → how we model uncertainty
→ summarizes quantitative data
→ helps make claims in the face of uncertainty
↳ since we can’t sample the whole population

General Terms
data → numerical or qualitative descriptions of an object
cases → the objects described by a set of data
​ ​ ↳ex: customers, subjects in a study, units in an experiment
label → a special variable used to differentiate the different cases
variable → a characteristic of a case
​ ↳ different cases can have different values (levels) of the variables
categorical variable → places a case in one of several groups/categories
quantitative variable → takes numerical values (for which arithmetic operations make sense)
​ ↳ needs a unit of measurement

Key Characteristics of a Data Set
What and how many cases does the data describe? (WHO?)
How many variables do the data have, and what are their exact definitions? (WHAT?)
What purpose does the data have? Can we draw conclusions for other cases? Are the
variables suitable? (WHY?)

Operationalization
important questions about operationalization:
→ does the operationalization capture what I want to study?
→ how is my operationalization related to other researchers’ operationalizations?
→ is there a standard way to operationalize my variable?
→ is my operationalization easily measurable?

Measurement Scales
- choose the highest possible and meaningful (concerning content) scale
nominal scale → assigns observations to unordered categories
↳ ex: favorite color
​ ​ - identities/labels (ex: gender, ID, …)
ordinal scale → assigns observations to ordered categories
↳ ex: satisfaction scale: (0) not satisfied at all → (9) very satisfied
- categorical: ex: how good are you in sports: good, satisfactory, poor
interval/ratio scale → assigns scores on a scale with quantitative information
​ ↳ ex: how many siblings do you have? 1,2,3,4,5,6,7,8,9,………
​ ​ - outcomes of calculations are sensible (ex: mean score = 5.2)
↳ has a true zero point

, if you feel like it → paypal / buymeacoffee




nominal ordinal interval ratio

categorizes and labels variables ✔ ✔ ✔ ✔

ranks categories in order ✔ ✔ ✔

has known, equal intervals ✔ ✔

has a true or meaningful zero ✔

Discrete vs. Continuous Measures
discrete data → “between” numbers are meaningless (without decimals)
↳ ex: how many siblings do you have: “2” and “3” are possible answers, but “2.5” is not
continuous data → “between” numbers have meaning (can have decimals)
↳ ex: how tall are you: all positive real numbers are meaningful answers
- nominal and ordinal scales tend to be discrete

1.2 Displaying distributions with graphs
exploratory data analysis → examining data to describe their main features
↳ by summarizing the data graphically
↳ or by summarizing characteristics of data with numbers
distribution of a variable → what values does the variable take and how often does it take them
- the choice for certain plots/graphs depends on the measurement scale/level of the variable:

nominal and ordinal scales interval and ratio scales




bar graph pie chart stemplot histogram


Distribution of Categorical Variables
- pie charts or bar graphs give counts or percents/proportion of cases that fall in each
category

Distribution of Quantitative Variables
stemplots (stem-and-leaf-plots)
- give a picture of a distribution while including the actual numerical values (best for small
numbers of observations, all above 0)
→ stem: consisting of all but the final digit of a value, written in a vertical column
→ leaf: final digit, in rows to the right of the stem (increasing order)
→ back to back stemplot: different datasets are written on both sides of the stem

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mikemarcu. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,46. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 69484 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€7,46
  • (0)
In winkelwagen
Toegevoegd