100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete samenvatting Polymeerchemie €7,99   In winkelwagen

Samenvatting

Complete samenvatting Polymeerchemie

1 beoordeling
 138 keer bekeken  1 keer verkocht
  • Vak
  • Instelling

Dit document bevat een complete samenvatting van de te kennen examenleerstof voor het vak Polymeerchemie. De hoofdstukken 'polymeren in gecondenseerde toestand' en 'mechanische en andere relevante eigenschappen van polymeren: meetprincipes en trends' worden volledig besproken. Het document geeft ee...

[Meer zien]

Voorbeeld 6 van de 15  pagina's

  • 24 september 2020
  • 15
  • 2019/2020
  • Samenvatting

1  beoordeling

review-writer-avatar

Door: lukasboon • 11 maanden geleden

avatar-seller
Samenvatting Polymeerchemie
& Kunststoffentechnologie

,
,INHOUDSOPGAVE
INHOUDSOPGAVE ........................................................................................................................................5
1 Polymeren in de gecondenseerde toestand ..................................................................................6
1.1 Verschijningsvormen in functie van de temperatuur bij amorfe polymeren .................................6
1.1.1 Glastoestand................................................................................................................................................ 6
1.1.2 Glas-rubber overgang................................................................................................................................... 6
1.1.3 Rubbertoestand en rubber-vloeibaar overgang ............................................................................................ 7
1.1.4 Elasticiteitsmodulus-temperatuurcurve voor vernette polymeren ................................................................ 7
1.2 Kristallijne polymeren ...................................................................................................................7
1.2.1 Microstructuur van polymeren ..................................................................................................................... 7
1.2.2 Het kristallisatieproces ................................................................................................................................. 8
1.2.3 Macroscopische eigenschappen van kristallijne polymeren: log E ifv T .......................................................... 8
1.3 Methodes voor het bepalen van de glastransitie en smelttemperatuur .......................................9
1.3.1 Differentiële Scanning Calorimetrie – DSC .................................................................................................... 9
1.3.2 Dilatometrie of thermomechanische analyse – TMA ..................................................................................... 9
1.3.3 Dynamische mechanische thermische analyse – DMTA............................................................................... 10
1.3.4 Indirecte methodes die info geven over de thermische eigenschappen....................................................... 10
1.4 Visco-elastisch gedrag van polymeren......................................................................................... 10
1.4.1 Vloeibare toestand..................................................................................................................................... 10
2 Mechanische en andere relevante eigenschappen van polymeren: meetprincipes en trends..... 13
2.1 Mechanische eigenschappen....................................................................................................... 13
2.1.1 Trek-rek-proeven ....................................................................................................................................... 13
2.1.2 Stijfheid ..................................................................................................................................................... 14
2.1.3 Treksterkte ................................................................................................................................................ 15
2.1.4 Slagsterkte ................................................................................................................................................. 15
2.2 Oppervlakte-eigenschappen........................................................................................................ 16
2.2.1 Hardheid .................................................................................................................................................... 16
2.3 Thermische eigenschappen ......................................................................................................... 16
2.3.1 Brosheidstemperatuur ............................................................................................................................... 16
2.3.2 Verweking .................................................................................................................................................. 16
2.3.3 Thermische uitzetting & geleidbaarheid ..................................................................................................... 16
2.3.4 Brandgedrag .............................................................................................................................................. 16
2.4 Optische eigenschappen.............................................................................................................. 17
2.5 Resistentie................................................................................................................................... 17
2.5.1 Chemische resistentie ................................................................................................................................ 17
2.5.2 Ontleding en veroudering........................................................................................................................... 17
2.5.3 Diffusie en permeabiliteit ........................................................................................................................... 17

,1 Polymeren in de gecondenseerde toestand

1.1 Verschijningsvormen in functie van de temperatuur bij amorfe polymeren
Polymeer dat opgewarmd wordt doorloopt verschillende verschijningsvormen: glastoestand –
rubbertoestand – vloeistof.

Stijfheid = de kracht die nodig is om een bepaalde deformatie (vervorming) van het materiaal te
realiseren. Indien de vervorming een elongatie (uitrekking) is, dan spreken we van de
𝐹 𝑁
elasticiteitsmodulus van Young (E). 𝐸 = 𝐴∙𝜀 [𝑚2 𝑜𝑓 𝐺𝑝𝑎, 𝑀𝑝𝑎]

Overgang van glastoestand naar rubbertoe-
stand bij de glastemperatuur (Tg).

E vóór Tg in GPa gebied, erna in MPa gebied.

Overgang van rubbertoestand naar vloeistof bij
de vloeitemperatuur Tv.




1.1.1 Glastoestand
Geen rotaties mogelijk rond de bindingen tussen ketenatomen van de polymeerketen wegens gebrek
aan thermische energie. Wel mogelijk: kleine veranderingen in de afstand tussen atomen of atoomgroe-
pen (= stretch). Polymeren in glastoestand zijn stijf en weinig rekbaar.

Soms kan er een zekere bewegingsvrijheid ontstaan bij zijgroepen = secundaire glasovergang (bv PMMA)
wat vaak leidt tot verbeterde slagvastheid. (Zie figuur)


1.1.2 Glas-rubber overgang
Einde glastoestand = wanneer er rotaties rond de hoofdketens mogelijk zijn, dwz er is voldoende thermi-
sche energie

Invloed ketenflexibiliteit: Tg ↑ als R-groep > (rotatie gehinderd)
Invloed keteninteractiekrachten: Tg ↑ als polariteit R-groepen ↑ (intermoleculaire krachten ↑)
Invloed lengte zijketen: Tg ↓als zijketenlengte ↑ (afstand tot hoofdketen ↑) MAAR als daardoor de ste-
rische hinder toeneemt zal Tg ↑

Inwendige weekmaking = wanneer lange zijketens leiden tot een Tg ↓ (= same bij synthetische week-
makers)

Tg wordt NIET beïnvloed door de ketenlengte van de hoofdketen!

Vuistregel (vaak): Tk = Tg (K) x 2

,1.1.3 Rubbertoestand en rubber-vloeibaar overgang
Rubbertoestand wordt bereikt als ketensegmenten vrij kunnen bewegen / roteren maar de ketens blij-
ven wel ten opzichte van elkaar op dezelfde plaats.

Kracht uitgeoefend op materiaal = makkelijkere vervorm. E ↓ tot MPa gebied.

Indien T nog ↑ verdwijnen de ketenverstrengelingen en wordt Tv bereikt.

Tv is WEL afhankelijk van de ketenlengte van de hoofdketen!
Hoe langer de keten, hoe meer verstrengelingen met de naburige ketens, dus hoe hoger Tv

Bij polymeren met een laag Mw wordt de rubbertoestand soms zelfs geskipt


1.1.4 Elasticiteitsmodulus-temperatuurcurve voor vernette polymeren
Chemische vernetting blijft wel behouden bij T↑. De E van de rubbertoestand blijft behouden tot de
ontledingstemperatuur bereikt wordt.
Bij lage vernettingsgraad ligt E amper hoger dan
voor een niet-vernet polymeer (-------------------)

Bij hoge vernettingsgraad ligt E opmerkelijk ho-
ger (- - - - - - - - - - - - -)

Door de chemische vernetting worden de rota-
ties ook beperkt, waardoor Tg↑.




1.2 Kristallijne polymeren
Vorming van kristallen, geordend als statische polymeerkluwens
VW: polymeer moet voldoende regelmaat vertonen. Kristalliniteit heeft een grote invloed op de eigen-
schappen van een materiaal.


1.2.1 Microstructuur van polymeren
Primaire structuur: precieze sequentie van atomen in polymeerketen
Secundaire structuur: conformatie van de atomen
Tertiaire structuur: opvouwen van polymeerketens
Quaternaire structuur: groepering van tert. structuren in finale materiaal
Vertakte polymeren:
Aanwezigheid van zijketens (vertakkingen) als gevolg van de synthesemanier.

LDPE gesynthetiseerd met radicalaire vinylpolymerisatie onder hoge druk. Hierbij ontstaan soms kleine
zijketens tgv transferreacties (= vertakking). LDPE vouwt eerder willekeurig op.
HDPE gesynthetiseerd met coördinatieve vinylpolymerisatie mbv Ziegler-Natta katalysatoren. Vorming
van vertakkingen wordt onderdrukt, HDPE vouwt gemakkelijk op.
% kristalliniteit HDPE > LDPE

, Kristallijne gebieden zorgen voor hardheid maar introduceren brosheid. Amorfe zones zorgen voor ver-
vormbaarheid en taaiheid / sterkte.
Takticiteit – aanwezigheid van zijgroepen/substituenten:
Zijgroep  vertakking. Zijgroep komt al voor in het monomeer en is niet het resultaat van een nevenre-
actie tijdens de synthese van het polymeer.

Bij PP komt om de 2 C’s een CH3-groep voor. Dit C-atoom wordt chiraal.
Isotaktisch: alle methylgroepen staan
aan dezelfde kant van de
polymeerketen

Syndiotaktisch: de substituenten staan
afwisselend aan de ene en aan de
andere kant van de polymeerketen

Ataktisch: de substituenten zijn
statistisch verdeeld
Enkel isotaktisch PP zal kristallijn materiaal vormen dat bruikbaar is; de ataktische variant heeft geen
praktisch nut. De takticiteit wordt vastgelegd tijdens het polymerisatieproces.
Cis-trans configuratie:
Bv poly-cis-1,4-isopreen en poly-trans-1,4-isopreen. Beide komen in de natuur voor, maar hebben an-
dere eigenschappen.


1.2.2 Het kristallisatieproces
Er ontstaat periodiciteit door regelmatig opvouwen van de polymeerketens. De morfologie van de ge-
vormde kristallen hangt af van de kristallisatiecondities
Uit verdunde oplossingen:
Thermoplasten opgelost in een geschikt solvent. Solvent doen verdampen of toevoeging van een non-
solvent resulteert in kristallisatie van het polymeer tot dunne plaatvormige kristallieten (lamellen).
Uit de smelt:
Afkoelen van een gesmolten polymeer. Lamellaire kristallieten groeien van een kiem uit tot een sferu-
liet. In de praktijk voegt men vaak kiemvormers toe (= beter).


1.2.3 Macroscopische eigenschappen van kristallijne polymeren: log E ifv T
Kristallijne polymeren gedragen zich anders dan hun amorfe tegenhangers

Bij T↑ zal ook de Tg bereikt worden. Vanaf deze T gedraagt de amorfe fractie van dat polymeer zich als
een rubber. In de kristallijne fractie zijn nog geen rotaties mogelijk, dus wordt diens hoge E behouden.
Resultaat: E zal licht ↓. Hoe groter de fractie amorf materiaal, hoe groter die daling.

Uiteindelijk wordt Tm (smelttemperatuur) bereikt. De kristalliniteit verdwijnt. E↓ tot zijn amorf niveau.
Indien Tm > Tv ontstaat er een vloeibare massa bij Tm
Indien Tm < Tv wordt er eerst een rubberachtig gebied doorlopen

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MatthewHaes. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 82388 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99  1x  verkocht
  • (1)
  Kopen