Premaster assessment samenvatting voor het Gamma domein van de Vrije Universiteit Amsterdam. Deze samenvatting dekt alle rekenkundige vaardigheden en Wiskunde/Statistiek thema's van het Gamma domein voor het premaster assessment. Gebruikt voor mijn premaster assessment in 2020.
Door: studentVrijeUniversiteit123 • 2 jaar geleden
Door: AmanF • 3 jaar geleden
Heel erg onduidelijk opgebouwd en geschreven
Door: RobinB97 • 3 jaar geleden
Dag Aman, bedankt voor je reactie. De samenvatting en opbouw is systematisch overgenomen aan de hand van het document: Rekenkundige Vaardigheden en Wiskunde/Statistiek Gamma-domein die is uitgegeven door de VU. Jammer om te horen dat jij deze opbouw en schrijf wijze onduidelijk vind. Desalniettemin hoop ik dat je toch het assessment heb behaald.
Door: rvink22 • 3 jaar geleden
Door: nilsvanegmond • 3 jaar geleden
Door: RobinB97 • 3 jaar geleden
Dag Nils, 
Bedankt voor je beoordeling. Graag hoor ik wat er volgens jou beter kan of ontbreekt zodat ik de samenvatting nog beter kan maken!
Wiskunde ............................................................................................................................................................... 4
Rekenen met Getallen ......................................................................................................................................... 4
Priemfactoren ................................................................................................................................................ 4
Vinden van delers ........................................................................................................................................... 5
GGD ............................................................................................................................................................... 5
KGV ................................................................................................................................................................ 5
Prioriteiten regels ........................................................................................................................................... 5
Rekenen met breuken ......................................................................................................................................... 6
Rationele getallen........................................................................................................................................... 6
Breuken met letters........................................................................................................................................ 8
Rekenen met machten en wortels ......................................................................................................................10
Machten........................................................................................................................................................10
Gebroken exponenten (wortels) ....................................................................................................................11
Algebra..............................................................................................................................................................12
Haakjes uitwerken .........................................................................................................................................12
Merkwaardige producten ..............................................................................................................................13
Ontbinden in factoren ...................................................................................................................................13
Logaritmen ........................................................................................................................................................14
Verschillende bewerkingen............................................................................................................................14
Functies en grafieken .........................................................................................................................................16
Functies.........................................................................................................................................................16
Eerstegraadsvergelijkingen oplossen .............................................................................................................16
Eerstegraadsongelijkheden oplossen .............................................................................................................17
Stelsel van twee vergelijkingen met twee onbekenden ..................................................................................18
Zoek de snijpunten van 2 lijnen......................................................................................................................19
Tweedegraadsvergelijkingen (kwadratische vergelijking) ...............................................................................19
De abc formule ..............................................................................................................................................20
Functies en grafieken.....................................................................................................................................20
Grafische weergave van een lineaire functie: .................................................................................................21
Tweedegraads/ kwadratische functies ...........................................................................................................22
Statistiek ...............................................................................................................................................................23
Beschrijvende statistiek......................................................................................................................................23
Inleiding ........................................................................................................................................................23
Centrum maten .............................................................................................................................................24
Spreidingsmaten ...........................................................................................................................................25
Kansverdelingen – Combinatoriek ......................................................................................................................26
Het sommatieteken .......................................................................................................................................26
Permutaties, variaties en combinaties. ..........................................................................................................26
Roosterroutes ...............................................................................................................................................27
De driehoek van pascal ..................................................................................................................................28
Combinatoriek...............................................................................................................................................29
Elementaire kansrekening .............................................................................................................................29
Rekenregels voor kansen ...............................................................................................................................30
Vaasmodel ....................................................................................................................................................30
Verwachtingswaarde .....................................................................................................................................31
2
,Verdelingen .......................................................................................................................................................32
Binomiale verdeling .......................................................................................................................................32
Normale verdeling .........................................................................................................................................32
Z-scores bij een standaardverdeling ...............................................................................................................33
3
,Wiskunde
Rekenen met Getallen
1. Let op goed onder elkaar werken met optellen en aftrekken. Gebruik kladblok als dit mag.
2. Met vermenigvuldigen ook goed onder elkaar werken. Altijd met het onderste getal beginnen
aan de rechter kant. Dit dat vermenigvuldigen per getal. Als je aan het tweede getal begint
onderaan (in het voorbeeld de 2) Dan schuif je een rij naar links met het antwoord. Dus in het
onderstaande voorbeeld: 8*1= 8 8*3 = 24 (2 onthouden) 8*4= 32 + 2 = 34 (3 onthouden) 3
noteren. = 3448. Dan doorgaan met 2 REGEL OPSCHUIVEN 2*1=2 enz.
3. Gedeeld door kan worden opgelost door een staart deling zoals te zien in het voorbeeld. Hoe
vaak past de 9 in de 3 = geen een keer = getal naast de 3 erbij halen is 6. Dus hoe vaak past 9 in
36 = 4 keer. Nu noteren we 36/9= 4 aan rechter kan noteren van staart deling. Controle 36-36=0.
Doordat we 0 hebben halen we nieuwe getallen erbij. 3e getal is 4 daar past de negen niet in dus
noteer 0 aan de rechterkant (rood) en haal volgende getal erbij Dus hoe vaak past 9 in 47= niet
helemaal maar 5*9 = 45. Noteer 45 onder 47 en de 5 aan de rechterkant. 47-45 = 2. Nu halen we
de 7 erbij dan wordt het 27. Hoe vaak past 9 in 27 dat is 3 keer dus 3 noteren rechterkant. En 27-
27=0 dus hij kan niet meer verder worden benaderd. Je kan ook het rest getal of decimaal
berekenen bij een staart deling. Met decimaal zet je een komma en mag je een nul bijschrijven.
Rest getal notatie kan ook dit is gewoon het getal wat over overblijft. Dus bijvoorbeeld
435=27*16+3 dus 3 is het rest getal wat overblijft in de staartdeling. of het decimaal zou zijn
16,11. EENTJE MAG JE ALTIJD GRATIS PAKKEN ZONDER 0 NOTATIE. LET OP GOK eerst globaal het
antwoord.
Priemfactoren
Priemgetallen zijn = 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, enz..
Alle getallen groter dan 1 kunnen worden ontbonden door de priemgetallen. Dit kan worden gedaan
door de priemontbinding in het voorbeeld hierboven te zien hoe de priem ontbinding werkt. Het te
ontbinden getal wordt gedeeld door een gekozen priemgetal waarna daar het quotiënt weer gedeeld
wordt enz. tot dat de quotiënt 1 is. De priemontbinding zijn alle priemgetallen. In het voorbeeld is de
4
, priemontbinding van 180 = 2*2*3*3*5 = 2^2 * 3^3 * 5. DE PRIEMGETALLEN ZIJN GETALLEN GROTER DAN
1 DIE GEEN ECHTE DELER HEBBEN. Dus geen 2 hele getallen. Een priemgetal heeft alleen 1 en zichzelf als
delers. Door de priemontbinding komen de delers van het ontbonden getal inzicht. PRIEM GETALLEN
ALTIJD BEGINNEN MET 2 ALS dit niet lukt door naar de 3, lukt dat niet door naar de 5, 7 enz. Grotere
getallen bijvoorbeeld 501/3 maak staart deling! Let op on even getallen kan je nooit delen door een even
priemgetal! Dus bijvoorbeeld 117 gaat niet door 2 want oneven. Maar wel door drie. Hierbij kan je een
simpele regel toevoegen door 1+1+7 te doen is 9. 9 is deelbaar door drie dus je kan 117 gedeeld door 3
doen. Doe dit snel met een staartdeling en je vind is 39!.
Vinden van delers
Het vinden van delers van een getal kan worden gedaan door de getallen te delen voor de priem
factoren. De quotiënten zijn uiteindelijk de delers van het getal. Daarnaast moet je even de
priemgetallen in een andere bewerkingsvolgorde zetten om uiteindelijk alles delers te vinden! Dus van
12 = 6, 4, 3, 2, 1.
GGD
Grootste gemene deler. Twee getallen kunnen delers gemeen hebben met elkaar. De GGD van deze
beide getallen is hun grootste gemeenschappelijke deler. Dus als je beide getallen ontbind in
priemfactoren, de factoren die beide voor komen doe je maal elkaar en het product daarvan in de
grootste gemene deler van beide getallen. Alleen gemeenschappelijke priemfactoren bij de ontbinding
worden vermenigvuldigd. Het product van de gemeenschappelijke priemfactoren is de GGD van beide
getallen. Soms kan je door het verschil van de twee getallen als zien wat de GGD is. Zoals 4352-4342 =
10. 5 kan niet maar /2 wel dus de GGD = 2
KGV
Kleinste gemeenschappelijk veelvoud van 2 getallen is als je de getallen in de tafels neemt en op een
gegeven moment een gemeenschappelijk veelvoud komt voor beide getallen. Bijvoorbeeld 6 en 8 =
6 = 12 18 24 30 36 42 48
8 = 8 16 24 32 40 48 56
Dus KGV is van 6 en 8 = 24.
Dit kan dan bijvoorbeeld bij breuken makkelijk gebruikt worden om ze zo klein mogelijk op te schrijven.
Zoals
Prioriteiten regels
1.Wat tussen de Haakjes staat
2.Machten en Wortels van links naar rechts
3.Vermenigvuldigingen en Delingen van links naar rechts
4.Optellingen en Aftrekkingen van links naar rechts
• Gebruik haakjes in alle gevallen waarin misverstanden omtrent de volgorde van het uitvoeren
van algebraïsche bewerkingen zouden kunnen ontstaan. Haakjes gaan voor alles
• LET GOED OP DE VOLGORDE VAN BEWERKINGEN
5
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper RobinB97. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.