100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
[BSc TN] Summary Boyce's Differential Equations and Boundary Value Problems €6,49
In winkelwagen

Samenvatting

[BSc TN] Summary Boyce's Differential Equations and Boundary Value Problems

5 beoordelingen
 15 keer verkocht

--- Satisfied? Please don't forget to leave a rating! --- Summary of the global edition of "Boyce's Differential Equations and Boundary Value Problems". This summary covers the essentials of Chapters 2, 3, 5, 7, 9 and 10; with explanations, examples and step-by-step guides on how to take on p...

[Meer zien]
Laatste update van het document: 4 jaar geleden

Voorbeeld 5 van de 69  pagina's

  • Nee
  • Chapter 2, 3, 5, 7, 9, 10
  • 30 oktober 2020
  • 3 november 2020
  • 69
  • 2020/2021
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)

5  beoordelingen

review-writer-avatar

Door: lotte44 • 2 jaar geleden

review-writer-avatar

Door: ezzie • 3 jaar geleden

review-writer-avatar

Door: danielgdkoole • 4 jaar geleden

review-writer-avatar

Door: rosannenolle • 4 jaar geleden

review-writer-avatar

Door: nielshutter99 • 4 jaar geleden

Erg duidelijke samenvatting met veel voorbeelden en stapsgewijze uitleg van de stof

avatar-seller
rhjatol
Summary Differential Equations
by Ruben Tol

Ch. 2 First-Order Differential Equations
Standard form
dy
= f (t, y)
dx

§2.1 Linear Differential Equations; Method of Integrating
Factors
Standard form
dy
+ p(t)y = g(t), y(t0 ) = y0
dt

How to solve
R
p(t) dt
(1) Multiply both sides of the equation by the integrating factor µ(t) = e :
dy
µ(t) + µ(t)p(t)y = µ(t)g(t).
dt
(2) Rewrite the left-hand side of the equation using the reverse chain rule:
d
(µ(t)y) = µ(t)g(t).
dt
(3) Integrate both sides of the equation:
Z
µ(t)y = µ(t)g(t) dt + c.

(4) Divide both sides of the equation by the integrating factor µ(t):
Z 
1
y= µ(t)g(t) dt + c .
µ(t)

(5) Solve y for t0 to obtain c.

Example
ty 0 + 2y = 4t2 , y(1) = 2
2
y 0 + y = 4t
t
2 R 2
p(t) = =⇒ µ(t) = e t dt = e2 ln |t| = t2
t
t2 y 0 + 2ty = 4t3 (1)

1

, d 2 
t y = 4t3 (2)
dtZ
t2 y = 4t3 dt = t4 + c (3)
c
y = t2 + (4)
t2
c
y(1) = 2 =⇒ 2 = 12 + =⇒ c = 1 (5)
12
1
y = t2 +
t2

§2.2 Separable Differential Equations
Standard form
dy
N 0 (x, y) + M 0 (x, y) = 0, y(x0 ) = y0
dx

How to solve
(1) Try to rewrite the equation by rewriting M (x, y) to a function of only x and
N (x, y) to a function of only y, by pulling all functions of x to one side, and all
functions of y to the other side:
dy
N 0 (y)
= M 0 (x).
dx
(2) Write the equation in differential form:
N 0 (y) dy = M 0 (x) dx.
(3) Integrate both sides of the equation:
N (y) = M (x) + c.
(4) Solve y for t0 to obtain c.

Example
dy 3x2 + 4x + 2
= , y(0) = −1
dx 2(y − 1)
dy
2(y − 1) = 3x2 + 4x + 2 (1)
dx
2(y − 1) dy = (3x2 + 4x + 2) dx (2)
Z Z
2(y − 1) dy = 3x2 + 4x + 2 dx =⇒ y 2 − 2y = x3 + 2x2 + 2x + c (3)

(y − 1)2 = x3 + 2x2 + 2x + 1 + c

y = 1 ± x3 + 2x2 + 2x + 1 + c

y(0) = 1 =⇒ 1 = 1 ± 1 + c (4)
√ √
1 + c > 0 =⇒ −1 = 1 − 1 + c =⇒ c = 3

y = 1 − x3 + 2x2 + 2x + 4

2

,§2.4 Differences Between Linear and Nonlinear Differential
Equations
df
Let f (t, y) and dy be continuous in some rectangle α < t < β, γ < y < δ containing
the initial value (t0 , y0 ). Then, in some interval t0 − h < t < t0 + h ∈ [α, β] there is
a unique solution y = φ(t) to the initial value problem.

Example

Let’s take the example equation from §2.1,
ty 0 + 2y = 4t2 .
This equation has the solution
1
y = t2 + .
t2
This solution is only continuous on the interval −∞ < t < 0, 0 < t < ∞ (t 6= 0).
Now, if we take the initial condition to be y(1) = 2, the unique solution φ(t) lays
in the interval 0 < t < ∞, for t0 = 1 ∈ [0, ∞]. If we take the initial condition
to be y(−1) = 2, the unique solution φ(t) lays in the interval −∞ < t < 0, for
t0 = −1 ∈ [−∞, 0].

§2.5 Autonomous Differential Equations and Population Dy-
namics
Standard form
dy
= ry
dx
Here, r is called the rate of growth if r > 0, or the rate of decline if r < 0.

Solving for the initial condition y(0) = y0 yields
y = y0 ert .
A population growth can be modelled with this equation, where y0 equals the amount
of a species at t0 and r > 0, allowing this population to grow exponentially.
dy

To show this growth, we plot dx , y and indicate the direction of the growth using
arrows on the y-axis. This line is called the phase line. For this equation, the phase
line is
0 −→ ∞.

To account for the fact that the growth rate actually depends on the population, we
will rewrite this equation to
dy  y
=r 1− y.
dt K
Here, r is the intrinsic growth rate, that is, the growth rate in the absence of any
limiting factor, and K is the saturation level, that is, the environmental carrying
capacity for the given species, both positive constants.

3

, dy
Solving this equation for dx = 0, when the population growth is stable, yields the
constant solutions y = φ1 (t) = 0 and y = φ2 (t) = K. These solutions are called the
equilibrium solutions, with 0 and K being called the critical points of the equation:
the function will eventually converge to y = φ2 (t) = K. φ1 (t) = 0 is called the
unstable equilibrium solution, meaning the population died out. y = φ2 (t) = K is
called the asymptotically stable solution, meaning the population will get closer and
closer to y = K:
y0 K
lim y(t) = = K.
x→∞ y0
The phase line for this equation contains the critical point K:

0 −→ K ←− ∞.

Now, let’s consider the following equation:
dy  y
= −r 1 − y.
dt T
Here, T is the threshold level, also a positive constant.
dy
Solving this equation for dx = 0, when the population growth is stable, yields the
constant solutions y = φ1 (t) = 0 and y = φ2 (t) = T . Now, if 0 < y < T , then
dy
dt
< 0, implying the population dies out over time and approaches the solution
y = φ1 (t) = 0. On the other hand, if y > T , then dy
dt
< 0, implying the population
keeps growing exponentially, with y = φ2 (t) = T being the unstable equilibrium
solution.

This equation has the following phase line:

0 ←− T −→ ∞.

To get rid of any unbounded growth, the following equation is used:
dy  y  y
= −r 1 − 1− y.
dt T K
where r is a positive constant and 0 < T < K.

Again, solving for dy
dt
now yields three critical points: y = φ1 (t) = 0, y = φ2 (t) = T
and y = φ3 (t) = K. Now, if T < y < K, then dy dt
> 0, allowing growth. But, if y < T
dy
or y > K, dx < 0, decreasing the population size in those intervals. Consequently,
the equilibrium solutions y = φ1 (t) = 0 and y = φ3 (t) = K are asymptotically
stable, and the solution y = φ2 (t) = T is unstable. This equation creates the
following population growth:

If y > K, the population is too big to be sustained, and declines down towards the
asymptotically stable solutions y = φ3 (t) = K.

If y < T , the population is too small to be sustained, and declines down towards
the asymptotically stable solutions y = φ1 (t) = 0.

4

, If T < y < K, the population is big enough to grow, inclining towards the asymp-
totically stable solution y = φ3 (t) = K and away from the unstable equilibrium
solution y = φ2 (t) = T .

This yields the following phase line:

0 ←− T −→ K ←− ∞.

§2.6 Exact Differential Equations and Integrating Factors
Standard form
∂N (x, y) ∂M (x, y)
N (x, y)y 0 + M (x, y) = 0, where =
∂x ∂y

How to solve

(1) Define a function ψ(x, y) with the following property:

∂ψ ∂ψ
N (x, y) = , M (x, y) = .
∂y ∂x

(2) Rewrite the equation to
∂ψ ∂ψ dy
+ = 0.
∂x ∂y dx
(3) Rewrite the left-hand side of the equation using the chain rule:

d
ψ(x, y) = 0.
dx
(4) Integrate both sides of the equation:

ψ(x, y) = c.

Solutions of the equation are defined implicitly by ψ(x, y) = c.

Example
2x + y 2 + 2xyy 0 = 0
∂ψ ∂ψ
2x + y 2 = , 2xy = =⇒ ψ(x, y) = x2 + xy 2 (1)
∂x ∂y
∂ψ ∂ψ dy d d 2
+ = 0 =⇒ ψ(x, y) = 0 =⇒ (x + xy 2 ) = 0 (2,3)
∂x ∂y dx dx dx
ψ(x, y) = x2 + xy 2 = c (4)




5

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper rhjatol. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65507 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  15x  verkocht
  • (5)
In winkelwagen
Toegevoegd