100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Solutions Manual to accompany Elements of Physical Chemistry 7e, ISBN: 9780198798651 Pre-Master Thermodynamics €7,99
In winkelwagen

Samenvatting

Samenvatting Solutions Manual to accompany Elements of Physical Chemistry 7e, ISBN: 9780198798651 Pre-Master Thermodynamics

4 beoordelingen
 84 keer bekeken  8 keer verkocht

Inclusief Excel bestand voor Lineweaver-Burk Plot

Voorbeeld 4 van de 31  pagina's

  • Nee
  • 1 t/m 6
  • 10 december 2020
  • 31
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)

4  beoordelingen

review-writer-avatar

Door: marinamayar • 1 maand geleden

review-writer-avatar

Door: ida-adaelbakry • 1 jaar geleden

review-writer-avatar

Door: xanthiasmith • 3 jaar geleden

review-writer-avatar

Door: meianuman • 3 jaar geleden

avatar-seller
AnalyticalChemistry
Lecture 1: Gasses
The Ideal Gas Equation
An ideal gas is a gas with no intermolecular interaction and with negligible volume.

P = pressure (Pa)
PV =nRT V = volume (m3)
n = amount of moles
Slide 16
RT R = gas constant (8.3145
v m=
P J/mol/K)
T = temperature (K)

The ideal gas equation is a combination of three different laws. The Boyle’s law is the
first law which states: At a constant temperature, the pressure of a fixed amount of
gas inversely proportional to its volume. The second law is Charles’s law which
states: At constant pressure, the volume of a fixed amount of gas is proportional to
the absolute temperature. The third feature is Avogadro’s principle which states: At a
given temperature and pressure, qual volumes of gas contain the same number of
molecules.

Density

nM pM M
ρ= = molar volume V m =
V RT ρ

Pressure in liquid (hydrostatic)

- p= ρ∙ g ∙h


Dalton’s Law: Partial pressures
When w/w% is given: calculate according to Lesson 5, exercise 5. Take any amount in
grams and divide with MW.
When v/v% is given: multiply the percentage factor with the density to get the
amount in kg L-1. If your total volume is a bottle of 1 L for example, then you know
your weight in grams and divide it with the MW to get the amount of moles.

Ptot = total pressure (Pa)
Ptot =P A + P B +etc PA,B,ETC = partial pressure (Pa) Slide 20
P A =Ptot ∙ X A PA = partial pressure (Pa)
Xa = mol fraction of component a
na
X A= na = amount molecules a Book page 11
ntot ntot = total amount molecules

Boyl e ' s Law at constant T :

p1 V 1=p 2 V 2=nRT

p1 V 2 V V
; = ; p2= p1 ∙ 1 ∨ p1 /( 2 )
p2 V 1 V2 V1


'
Boyl e s Law bij niet constante T :

1

, T2
p1 V 1 p2 V 2 /V
p1 V 1=nR T 1 p2 V 2=nR T 2 n= = p2 T1 2
R T1 R T2 =
p1 V1
Real gasses

Compressibility factor z=1 for ideal gasses

P = pressure (Pa)
V = volume (m3)
PV z = empirical factor
Z= Slide 24
nRT R = gas constant (8.3145
J/mol/K)
T = temperature (K)

Virial coefficient + Van der Waals equation
a = attractive forces between
2
n molecules ((Pa*m6)/mol2)
( ( ))
p+ a
V
( V −nb )=nRT b = finite size of molecules
(m3/mol)
Slide 25 – 28




Gas kinetica
In the gas kinetic model theory we assume that molecules only interact during elastic
collisions.

Ekin = kinetic energy of a mole (J)
mi = mass particle (kg)
3 vi = speed particle (m/s)
Slide 45
Ekin =0.5 ∙m i ∙ v i= k b T kb = Boltzmann constant (1,38 *
2 Slide 58
10-23 J/K)
T = temperature (K)

F = force (N)
F=m∙ a m = mass (kg) Slide 45
a = acceleration (m/s2)
8 RT 1 /2
v mean=v = ( )
πM M = mol mass (kg/mol)( 10-3
Slide 55

3 RT 1/ 2 g/mol)
v rms= ( )
M vmean = speed (m/s)
RT = 8,314 * temperature (K)
Slide 58

1 2
PV = nM v rms Slide 58
3

Collision Cross Selection
2 σ = cross colission section (m2)
σ =π d Slide 61
d = diameter molecule (m)
V coll =σ ∙ √ 2∙ v Vcoll = speed at collision (m/s0 Slide 62
p∙ V coll v ∙σ ∙ p ∙ √ 2 vmean = speed (m/s)
z= = p = pressure (Pa) Slide 63
k bT k b ∙T
kb = Boltzmann constant (1,38 *
v k ∙T 10-23 J/K)
λ= = b Slide 63
z p ∙ σ ∙ √2 λ = mean free path (m)


Diffusion

2

, 1 λ = mean free path (m)
D i= ∙ v ∙ λ vmean = speed (m/s) Slide 74
3

λ decreases with P  Diffusion is slower at higher P
λ and vmean decreases with size  Diffusion is slower for large molecules
vmean increases with T1/2  diffusion is faster with T
Flux J in gassen (transport 3 soorten)

1) Matter (molecular diffusion)
1
Di= λ∙ v mean met Di=diffusion coefficient ∈m 2 s−1
3
2) Heat conduction (energy)
kb
κ= ∙ v mean met κ=thermal conductivity ∈J K −1 m −1 s−1
2 √2 σ
3) Momentum (viscosity of gasses)
1
η= λ ∙ v mean ∙ ρ met η=viscosity ∈Pa ∙ s
3


Carnot Cycle
Purpose: Proofs the impossibility of any system to transform the heat in work in order
to achieve an efficiency.

Efficiency of a Tc
η=1−
system Th η = efficiency
Tc Tc = cooling
Efficiency of a
η= temperature (K)
refrigerator T h−T c Th = heat
Efficiency of a Tc temperature (K)
η=
heat pump T h−T c




3

, Lecture 2: The First Law of Thermodynamics
The first law of thermodynamics: The internal energy of an isolated system is
constant.

Internal energy (U)
The capacity of a system to do work or to transfer heat to the surroundings. Grand
total of all the kinetic and potential energies.

Constant T, perfect gas:
Closed system: ΔUsys = -ΔUsur
ΔUsys = q + w

Isolated system: ΔUsys = 0
q = -w

Constant V, no non-expansion work:
If a reaction is carried out in a container of constant volume, the system can do no
expansion work.
Therefore, w=0. Therefore,

ΔU=q

Work
The mode of transfer of energy that achieves or utilizes uniform motion in the
surroundings.

Expansion work
w=( pext ∙ A ) ⋅ h=−P ext ∙ ∆ V

Pext = External pressure (Pa)
h = distance (height)
A = Area
Pext**A=force
A*h=∆ V
∆ V = volume change (m3)

- Free expansion: When the external pressure is zero, then w=0. The system
does no work as it expands.
- At constant volume, w=0 (because ΔU=q)
- Maximum work is done when the external pressure is only infinitesimally less
than the pressure of the gas in the system (=mechanical equilibrium,
maximum expansion work).

Work of reversible isothermal expansion (Perfect gas, constant T)

V2
w=−nRT ln ( )
V1


Work Energy System Volume
Negative Lost Work done by Expansion
Positive Gained Work done on Compression




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AnalyticalChemistry. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59804 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99  8x  verkocht
  • (4)
In winkelwagen
Toegevoegd