● Perceptron: Frank Rosenbladt was the first to invent the Perceptron
● Back propagation: Several researchers in the 1980’s
● Big Data:
o Andrew Ng (Cat experiment)
o Fei-Fei Li (ImageNet) An image database organized according to the WordNet
hierarchy. Each node in this hierarchy represented thousands of images.
o AlexNet 🡪 Deep CNN trained on ImageNet using GPU’s
Practical Deep Learning
Although most computers (like your laptop) have a CPU (Central Processing Unit) this is not optimal
for running Deep Neural Networks. Despite the fact that it can handle a diverse workload, the
computation is done in a serial manner. This way of computation will result in very slow training.
A better approach is the use of a GPU (Graphical Processing Unit) which can only handle a specific
workload, but computes this in a parallel fashion which is much more efficient, especially since the
computations in a neural network are easy to break down in similar smaller computations. The
difference is clearly illustrated in this video. An explanation can be found here.
Deep learning environments
,Perceptron
- Most basic single-layer NN
⇒ typically used for binary classification problems (1 or 0, “yes” or “no”)
- Data needs to be linearly separable (if the decision boundary is non-linear, the
perceptron can’t be used).
- Goal: find a line that splits the data/observations
How does a perceptron work?
Our inputs (Xi) are each multiplied by weights (Wi). The outputs are combined in a summed
input function that is passed on to an activation function (Step function). The activation
function determines if the network classifies the input (y’) as 1 or 0 based on a threshold (t)
,NOTE: one f the inputs is the bias. Without the bias, the function has to go through the
origin, and that is not always what we want!
Activation function
● the output node has a threshold t
○ if summed input ≥ t, then it ‘fires’ (output y’=1)
○ if summed input < t, then it doesn’t ‘fire’ (output y’=0
● We can rewrite the activation function. t is moved to the other side of the equation
creating a situation where:
○ 0 or higher = 1
○ Lower than 0 = 0
NOTE: Eva: Threshold = bias
Update rule
How can the perceptron now learn a good set of weights/bias? If the expected output is not
equal to the observed output (i.e. y’ ≠ y) the weights (and bias) need to be updated
accordingly:
If y’ is not equal to y, then the learning rate
and xi will be multiplied by either -1 or 1.
→ as this resulting value is added to wi, the
weight will bet smaller/larger
→ e.g. wi + 0.1 * xi * (-1) < wi
, If y and y’ are equal, the learning rate and xi will be multiplied by 0.
→ wi + 0 = wi → therefore the weights won’t change if the prediction was correct.
AND Gate
AND gate fire 1 ONLY when both inputs are 1.
In the example below we can see how the w&b are adjusted as we train. In this example, X3
is the bias and W3 is the weight that corresponds to the bias. We have a learning rate of 1.
● We see that the first example yields: y’= 1
while y = 0
→ this leads to an update rule:
○ w1_new = 0.5 + 1 * 0 * (-1) = 0.5
○ w2_new = 0.5 + 1 * 0 * (-1) = 0.5
○ W3_new = 0 + 1 * 1 * (-1) = -1
● The second row yields: y’ = 0 and y = 0
because:
0 * 0.5 + 1 * 0.5 + 1 * -1 = -0.5
→ because -0.5 < 0 we predict 0
→ we do not update the weights because the prediction is correct
● The same accounts for the third and fourth prediction
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jeroenverboom. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,49. Je zit daarna nergens aan vast.