,OPEN QUESTIONS
Question 1 – Learning and individual differences (2.5 credits)
In Figure 1, I showed the code that I have created for power law and exponential law. In this code, at first, I
created a column matrix that contains random exponential numbers having an average of 1 as learning
constant for 20 participants. Then I have placed the initial conditions that have a mean of 100s and a standard
deviation of 25s on Trial 1 for all participants. Then I have created a zero-matrix called task_completion that
indicates 20 participants (20 rows) and 20 trials (20 columns) for bot exponential and power law. Since we
know the mean, standard deviation value, then I created normal distribution to find the task completion time
on Trial1 for each participant. Later on, in the first if loop I created the power-law formula to find out the time
on other trials as well as the exponential law formula under it. In the second if loop, I created subplots of each
participant learning curve using power law. Then I have plotted the mean learning curve as well as the mean
learning curve with the learning curve of a random individual. Later on, I plotted the same individual’s learning
curve using power-law and exponential law. In the end, I have plotted the mean graphs of both exponential
and power law.
Figure 1: Code for Power law and
Figure 2: Learning curve of 20
exponential law
individuals
Figure 3: Mean learning curve Figure 4: Mean learning curve with random
individual’s learning curve
, Figure 5: Random individual’s learning Figure 6: Mean learning curve with mean
curve with random individual’s exponential exponential curve
curve for the same individual
Figure 7: Random individual’s exponential
curve with mean exponential curve
Heathcote et al. (2000) showed in their conducted experiment that when three-parameter function of both
power-law and exponential law were compared, exponential law showed better results in around 80% of the
cases. Also, they thought that parameter estimates from power law can be not related to underlying learning.
[1] Additionally, Anderson (2001) found out that averaging different kinds of curve shapes tend to give power-
like functions. [2] Furthermore, Myung et al. (2000) worked to find why averaged curves give a bitter fit for
power-law when compared with exponential law. [3] Moreover, Murre and Chessa (2011) showed in their
study that when there are more than a few participants, the power function fits better than the exponential. [4]
If we look at the variance and number of participant graph of power-law and exponential law, we can see that
exponential law works better for 4 or less than 4 participants.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper melodyc. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,69. Je zit daarna nergens aan vast.