100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary BBS1001 The LEGO Bricks of Life €10,49
In winkelwagen

Samenvatting

Summary BBS1001 The LEGO Bricks of Life

 73 keer bekeken  2 keer verkocht

Summary study book Molecular Biology of the Cell of Bruce Alberts, Alexander Johnson - ISBN: 9780815344643, Edition: 6, Year of publication: - (-)

Voorbeeld 3 van de 24  pagina's

  • Ja
  • 4 februari 2021
  • 24
  • 2018/2019
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (19)
avatar-seller
MeraldeJong
Course BBS1001: The LEGO Bricks of Life

Fats and sugars
 Saturated fats:
o Very stable and hard to break up
o No double bonds, maximum amount of H
o Can store more energy
o Likely to stick as cholesterol, therefore considered the “unhealthy” fats
 Unsaturated fats:
o One or more double bonds, and thus easier to break up
o Cis and trans double bonds
 Sugars




 Needed why?
o Fats  helps
absorb vitamins,
component of
cell membranes,
long term energy, maintain body temperature,
protect vital organs, part of the myelin
o Sugars  quick energy, short time reserve energy storage, structural function
(cellulose almost completely L-glucose), some organs only work on sugar
 Digestion of fat
1. Emulsion by bile acids
2. Coats fat droplets  bigger surface  micells are formed by bile salts
3. Fat is broken down into 1 glycerol and 3 fatty acids by pancreatic lipase
4. Absorption
 Passes wall of small intestine and enters the epithelial cell (enterocyte)
 Re-synthesized back into triglyceride which is coated by protein
 Makes fat-water soluble
 Can travel out of the epithelial cell and enters the lymph-vessels and after
that the bloodstream
 Digestion of sugar
o Glucose: Krebs cycle and glycolysis  ATP production
o Steps
 Amylase breaks the sugars in smaller particles (salivary glands)
 Stomach acid makes amylase dysfunctional and breaks the sugars further
into smaller pieces  monosaccharides
 Further broken down in small intestine (lactase breaks down lactose etc.)


 Essential fatty acids
o Omega 6  gamma linolenic acid, treat symptoms of heart diseases

, o Omega 3  alpha linolenic acid, formation of cell membranes, circulation and
oxygen uptake
 Nomenclature
o Omega  where the double bond is, called from not the COOH part (last C is called
Omega)
o Delta  where the double bond is, called from the COOH part (first C is called Delta)
o N  number of C
o C:N  number of C atoms : number of double bonds

Chemical evolution
 How can a ribosome be used to create proteins when a ribosome is a protein a well?
o Ribozyme  piece of RNA which can behave like an enzyme and therefore can
synthesize itself

Composition of DNA
 Phosphate group, sugar group (deoxyribose),
nitrogen base (A, T, G, C)
o Chargaff rule: equal number of purines
(A, G) and pyrimidines (U, C, T)
 Double helix structure formed by hydrogen
bonds  minor and major groove
 Nucleoside = sugar + base
 Nucleotide = sugar + base + phosphate
 Distance between basepairs: 0.34 nm

Differences RNA and DNA
 Uracil instead of Thymine
o Less expensive to produce
o In DNA, Uracil is produced by the chemical degradation of cytosine  for RNA is
quantity important but not lifespan
 Ribose instead of desoxyribose

Different forms of RNA
 Messenger RNA
o Carries the genetic code copied from the DNA during transcription in form of triplets
 64 possible codons, 20 represent amino acids, 3 stop codons
o 5’ end is capped with guanosine triphosphate nucleotide, 3’ end has a poly-A-tail
 Ribosomal RNA
o Two units in ribosomes which have their own RNA
o Combines with proteins to form ribosomes
o Facilitate the assembly of amino acids to form a polypeptide chain
 Transfer RNA
o Transfers amino acids during protein synthesis
o Cloverleaf structure
o Only the nucleotides can be recycled  anticodon of the mRNA
 Small nuclear RNA
o Forms complexes with proteins which are used to pre-slice RNA
o Recognizes splice sites of the RNA and binds the end of two exons together

Transcription process
 Prokaryotes

, 1. Initiation by RNA polymerase holoenzyme (does not require primer) from promotor
sequence
 -35 region (sigma factor binds), -10 region (Pridnow box), +1 (transcription
starts)
2. Elongation
3. Termination  rho independent (specific sequence and hairpin) or rho dependent
(rho protein)
 Eukaryotes
1. Initiation by RNA polymerase and several other proteins
 -75 region (CAAT box, sigma factor), -25 region (TATA box), +1 (transcription
starts)
2. Elongation: RNA polymerase is reading from 3’ to 5’ but synthesizing from 5’ to 3’
3. Termination: different for each type of RNA polymerase (I, II, III)
 Product is pre-mRNA  still needs post transcriptional modifications

Replication process
1. Topo-isomerase type 1 unwinds the DNA (removes supercoiling)
2. Helicase breaks interactions between base pairs
3. Primer (=short piece of RNA) binds to 3’ end
of the leading strand
4. DNA polymerase type II is responsible for
the elongation
5. DNA polymerase type I removes all primers
which are replaced by appropriate bases
6. DNA polymerase type III checks the newly
formed bases
7. DNA ligase joins the Okazaki fragments
8. Topo-isomerase type 2 creates supercoiling

Differences DNA polymerases and RNA polymerases
DNA polymerases RNA polymerases
Replication Transcription
Needs primer Doesn’t need primer
Fast 10% slower
Proofreading mechanism No proofreading mechanism
Attack 3OH group Doesn’t need the 3OH group
Reads from 3’ to 5’ and synthesizes from 5’ to 3’

Post transcriptional modifications
 Splicing  introns are removed from the RNA by U1, U2, U3, U4, U5 and U6
 5’ capping  the triphosphate group is replaced by the “cap” = guanine triphosphate
o Prevents from enzymatic degradation, assists in export to cytoplasm, increases
stability, serves recognition point for ribosome
 Poly-A-tail  string of adenine bases attached to the synthesized end of RNA, catalyzed by
poly (A) polymerase
o Protects RNA from enzymatic degradation, helps in translation
 Prokaryote is polycistronic (transcription and translation at the same time), eukaryote is
monocistronic (first transcription, then translation)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MeraldeJong. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,49  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd