100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Lecture 01: Visuals & Descriptive [Week 6] €2,99   In winkelwagen

Samenvatting

Summary Lecture 01: Visuals & Descriptive [Week 6]

 47 keer bekeken  0 keer verkocht

An extensive summary of chapters 2, 3, and 4. Learning material is further clarified with the help of images and symbols to better visualize and understand the learning material.

Voorbeeld 3 van de 11  pagina's

  • Nee
  • Chapter: 2, 3 & 4
  • 5 februari 2021
  • 11
  • 2020/2021
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (12)
avatar-seller
mm21262
Visuals & Descriptive
Lecture 6.1
Chapter [Paragraph]:
2 [1-2]
3 [1-2-3-4-5-6-7-8-9]
4 [1-2-3-5-6-8]
2.1 Variables and Data
Data Terminology
Observation = A single member of a collection of items that we wat to study, such as a person, firm,
or region.
Variable = A characteristic of the subject or individual.
Data set = Consists of all the values of all of the variables for all of the observations that were
chosen to observe. These values are entered in a ‘n x m’ matrix.




Categorical and Numerical Data
Categorical (qualitative) = Have values that are described by words rather than numbers.
Coding = When categorical variables are represented by numbers. It does not make the
data numerical.
Binary variables = When categorical variables only have two values.


Numerical (quantitative) = Arise from counting or measuring.
Discrete data = Variables with countable numbers.
Continuous data = Variables with values within an interval.

,Time Series Data and Cross-Sectional Data
Time series data = An observation representing a different equally spaced point in time.
- Interested in trends and patterns over time.
Periodicity = Time between these observations.
Cross-sectional data = An observation representing different individual units (e.g., a person, firm …)
- Interested in variations and relationships between variables.


2.2 Level of Measurement
Nominal Measurement
Nominal measurement is the weakest level of measurement and the easiest to recognize. It is used as
a placeholder for values of variables.
Ordinal Measurement
Ordinal data codes connote a ranking of data values. (for instance: Moody’s Bond ratings)
Interval Measurement
When the ranking of data values contains meaningful intervals between scale points but does not
have a Zero Point. (for instance: the scale of Fahrenheit has no beginning or end)



Likert scales =
Coarseness of a Likert scale = Number of scale points.
Ratio Measurement
Ratio measurement is the strongest level of data measurement. It has all properties of the other three
data types, but in addition possesses a meaningful zero which represents the absence of the quality
being measured. Because of the zero point, ratios of data values are meaningful. (20 books are twice
as much as 10 books.)

, 3.1 Stem-and-Leaf Displays and Dot Plots
Stem-and-Leaf Display
Stem-and-leaf plot = A tool of exploratory data analyses (EDA) that seeks to reveal essential data
features in an intuitive way. A stem-and-leaf plot is basically a frequency tally,
except that it uses digits instead of tally marks.
Stem = The tens digit of the data.
Leaf = The digits within the stem.




Dot Plots
Dot plot = A graphical display of ‘n’ individual values of numerical data. Dot plots are an
attractive tool for data exploration because they are easy to understand. A dot plot
shows variability, the center, and can show the shape of the distribution.
Stacked dot plot = Compare two or more groups.


Basic steps for making a dot plot:
I. Make a scale that covers the data range
II. Mark axis demarcations and label them
III. Plot each data value as a dot above the scale at its approximate location.
If 1+ data values lie around the same X-axis location, the dots are piled up vertically.




3.2 Frequency Distributions and Histograms
Frequency Distributions
A frequency distribution is a table formed by classifying ‘n’ data values into ‘k’ classes called bins (as called
in Excel). The bin limits define the values to be included in each bin. Usually, all the bin widths are the
same. The table shows the frequency of data values within each bin. Frequencies can also be expressed as
relative frequencies or percentages of the total number of observations.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mm21262. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99
  • (0)
  Kopen