100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting Computersessies Onderzoeksmethodes In Finance €6,49
In winkelwagen

Overig

Samenvatting Computersessies Onderzoeksmethodes In Finance

 6 keer verkocht
  • Vak
  • Instelling
  • Boek

Samenvatting van de computersessies met uitleg van begrippen, werkwijze, formules, interpretaties van alle oefeningen en afbeeldingen van de regressie output prof: Koen Inghelbrecht Vak: Onderzoeksmethoden In Finance

Voorbeeld 4 van de 132  pagina's

  • 15 februari 2021
  • 132
  • 2020/2021
  • Overig
  • Onbekend
avatar-seller
Inhoud
Computersessie 1: Introduction .................................................................................................... 4
1 Inspect Excel file .......................................................................................................................... 4
2 Import data.................................................................................................................................. 4
3 Transform data ............................................................................................................................ 4
4 Plot Data ...................................................................................................................................... 5
4.1 Time series plot ................................................................................................................... 5
4.2 XY-plot ................................................................................................................................. 6
4.3 Histogram ............................................................................................................................ 6
5 Normality test.............................................................................................................................. 6
6 Descriptive statistics .................................................................................................................... 7
6.1 Mean and variance .............................................................................................................. 7
6.2 Correlations ......................................................................................................................... 8
7 Exercise: “Equity” ........................................................................................................................ 9
Computersessie 2: Classical Linear Regression Model (CLRM) ...................................................... 13
8 Simple regression ...................................................................................................................... 13
8.1 Example: CAPM ................................................................................................................. 13
8.2 OLS-regressie ..................................................................................................................... 13
8.3 Residuals ............................................................................................................................ 15
8.4 R²: goodness of fit strategies ............................................................................................ 16
8.5 Statistical tests................................................................................................................... 17
9 Exercise: “Equity” ...................................................................................................................... 23
10 Multiple regression.................................................................................................................... 31
10.1 OLS estimation of multiple regression .............................................................................. 31
10.2 Residuals ............................................................................................................................ 33
10.3 Detection of outliers.......................................................................................................... 33
10.4 Dealing with outliers.......................................................................................................... 35
11 Regression with dummy variables............................................................................................. 37
Computersessie 3: CLRM Assumptions and Diagnostic Tests ........................................................ 39
12 Pitfalls in regression models using cross-sectional data ........................................................... 39
12.1 Omitted variable basis ....................................................................................................... 39
12.2 Multicollinearity ................................................................................................................ 41
1

,12.3 Omitted variable bias vs. multicollinearity ........................................................................ 43
12.4 Heteroskedasticity ............................................................................................................. 43
13 Working with time series data .................................................................................................. 52
13.1 Example: “Microsoft” ........................................................................................................ 52
13.2 Simple regression model ................................................................................................... 52
13.3 Outliers .............................................................................................................................. 54
14 Pitfalls using time series variables ............................................................................................. 57
14.1 Omitted variable bias ........................................................................................................ 57
14.2 Multicollineariteit .............................................................................................................. 59
14.3 Heteroskedasticiteit .......................................................................................................... 60
15 Additional pitfall: Residual autocorrelation .............................................................................. 63
15.1 Detection ........................................................................................................................... 63
15.2 Example: “badnews” ......................................................................................................... 68
16 Exercises .................................................................................................................................... 75
16.1 Exercise: “Wage discrimination” ....................................................................................... 75
16.2 Exercise: “Earnings” ........................................................................................................... 82
16.3 Exercise: “Philips curve” .................................................................................................... 90
Computersessie 5: Non-Stationarity and Unit Root Testing .......................................................... 95
17 Detecting nonstationary time series ......................................................................................... 95
17.1 Example: “Stock prices on NYSE” ...................................................................................... 95
17.2 Time series plot ................................................................................................................. 95
17.3 Autoregressive model........................................................................................................ 96
17.4 Unit root test ..................................................................................................................... 97
18 Exercise: “Interestrates”.......................................................................................................... 102
Computersessie 7: Models for Panel Data ..................................................................................107
19 Panel data ................................................................................................................................ 107
19.1 Example: “Airline” ........................................................................................................... 107
20 Panel data models ................................................................................................................... 109
20.1 Steps to follow ................................................................................................................. 109
20.2 Pooled OLS: Estimation ................................................................................................... 109
20.3 Individual effects models................................................................................................. 111
21 Exercise: “Panel” ..................................................................................................................... 118
Computersessie 8: Limited Dependent Variable Models .............................................................122
2

,22 Limited dependent variable models (LVD) .............................................................................. 122
22.1 Example: “Split ratings” ................................................................................................... 122
22.2 Linear probability model ................................................................................................. 123
22.3 Logit and probit models .................................................................................................. 125
23 Exercise: “Default”................................................................................................................... 129




3

, Computersessie 1: Introduction
1 Inspect Excel file
• Kijken hoe Excel file is opgesteld
• moeten er transformaties gedaan worden
• wat is eerste kolom/rij
• …


2 Import data
Toolbar: File/Open Data/User File

Save:
Toolbar: File/Save Data

Goed opletten welk type financiële data:
• time series (= var. varieert doorheen tijd)
• cross-sectional (= data over bv. verschillende bedrijven)
• panel (= data doorheen tijd, over verschillende bedrijven)


3 Transform data
(indien nodig!)


Generate new variable:
Toolbar: Add/Define new variable...
Compute return based on total return index (TRI) and define it as R
R = (TRI-TRI(-1))/TRI(-1) (= rendement fortis)

Exercise: Compute market return based on BEL-20 total return index (BEL20) and define it as RM:
RM= (BEL20 -BEL20(-1))/BEL20 (-1)(= rendement markt)

Exercise: Compute return based on price index (PI) and define it as R2.
R2= (PI-PI(-1))/PI(-1) (=rendement prijsindex (PI))

Build in options: log, squares, etc
Select variable(s),
Toolbar: Add/Logs of selected variables
Toolbar: Add/Squares of selected variables




4

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ZiziCoincoin. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€6,49  6x  verkocht
  • (0)
In winkelwagen
Toegevoegd