100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
1CV40 - Formulenblad €5,49
In winkelwagen

Overig

1CV40 - Formulenblad

1 beoordeling
 37 keer bekeken  5 keer verkocht

Formulenblad voor gebruik tijdens tentamen

Voorbeeld 1 van de 4  pagina's

  • 18 februari 2021
  • 4
  • 2019/2020
  • Overig
  • Onbekend
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: alejandroschmitz • 3 jaar geleden

avatar-seller
remcodewit
1CV40 - Formulenblad

Chapter 2 – The Failure Distribution Chapter 4 – Time-Dependent Failure Models
𝑅𝑅(𝑡𝑡) = ℙ{𝑇𝑇 ≥ 𝑡𝑡} Weibull Distribution: The Gamma Distribution:

𝛽𝛽 = shape parameter, and 𝜃𝜃 = scale parameter (𝜃𝜃 = characteristic 𝛾𝛾 is the shape parameter, 𝛼𝛼 is the scale parameter
𝑅𝑅(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡 ′ )𝑑𝑑𝑑𝑑′ = 1 − 𝐹𝐹(𝑡𝑡) 𝑡𝑡
𝑡𝑡 life). 𝑡𝑡 𝛾𝛾−1 ∗ 𝑒𝑒 −𝛼𝛼
Properties: β 𝑡𝑡 𝛽𝛽−1 𝑓𝑓(𝑡𝑡) = , 𝛾𝛾, 𝛼𝛼 > 0, 𝑡𝑡 ≥ 0
λ(t) = ∗ � � , 𝜃𝜃 > 0, 𝛽𝛽 > 0, 𝑡𝑡 ≥ 0 𝛼𝛼 𝛾𝛾 ∗ Γ(𝑦𝑦)
I) t ≥ 0, II) R(0) = 1, III) lim [𝑅𝑅(𝑡𝑡)] = 0, θ 𝜃𝜃 𝑡𝑡
𝑡𝑡→∞
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −(𝑡𝑡/𝜃𝜃)
𝛽𝛽 𝐼𝐼 � , 𝛾𝛾�
IV) 0 ≤ 𝑅𝑅(𝑡𝑡) ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) 𝑅𝑅(𝑡𝑡) = 1 − 𝛼𝛼
𝛿𝛿𝛿𝛿(𝑡𝑡) β 𝑡𝑡 𝛽𝛽−1 Γ(𝛾𝛾)
V) R(t) is a monotonously decreasing function of t, i.e. ≤ 𝑓𝑓(𝑡𝑡) = ∗ � � ∗ 𝑒𝑒 −(𝑡𝑡/𝜃𝜃)
𝛽𝛽
𝛿𝛿𝛿𝛿
θ 𝜃𝜃 𝛼𝛼(𝛾𝛾 − 1), 𝛾𝛾 > 1
0, ∀∆𝑡𝑡, ∆𝑡𝑡 > 0 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
1 0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜃𝜃 ∗ Γ �1 + �
𝛽𝛽 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛾𝛾 ∗ 𝛼𝛼 𝜎𝜎 = �𝛾𝛾𝛼𝛼 2
𝐹𝐹(𝑡𝑡) = ℙ{𝑇𝑇 < 𝑡𝑡} 2 1 2 𝑡𝑡 𝑡𝑡/𝛼𝛼
𝑡𝑡 ′
𝑡𝑡 𝜎𝜎 2 = 𝜃𝜃 2 ∗ �Γ �1 + � − �Γ �1 + �� � 𝐼𝐼 � , 𝛾𝛾� = � 𝑦𝑦 𝛾𝛾−1 ∗ 𝑒𝑒 −𝑦𝑦 𝑑𝑑𝑑𝑑, 𝑦𝑦 =
𝐹𝐹(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ = 1 − 𝑅𝑅(𝑡𝑡) 𝛽𝛽 𝛽𝛽 𝛼𝛼 0 𝛼𝛼
𝑥𝑥
0 0 < 𝛾𝛾 < 1  DFR, 𝛾𝛾 = 1  CFR
Properties: Γ(𝑥𝑥) = � 𝑦𝑦 𝑥𝑥−1 𝑒𝑒 −𝑦𝑦 𝑑𝑑𝑑𝑑 𝛾𝛾 > 1  IFR
0
I) t ≥ 0, II) F(0) = 0, III) lim [𝐹𝐹(𝑡𝑡)] = 1 Γ(𝑥𝑥) = (𝑥𝑥 − 1) ∗ Γ(𝑥𝑥 − 1)
𝑡𝑡→∞
Chapter 5 – Reliability of Systems
IV) 0 ≤ 𝐹𝐹(𝑡𝑡) ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) �ln�𝑅𝑅(𝑡𝑡1 )� − ln�𝑅𝑅(𝑡𝑡2 )�� 𝛽𝛽
1 𝑡𝑡 − 𝑡𝑡1
𝛽𝛽
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1 , 𝑡𝑡2 ) = = 𝛽𝛽 ∗ 2 Serial configuration:
V) F(t) is a monotonously increasing function of t, i.e. ≥ 𝑡𝑡2 − 𝑡𝑡1 𝜃𝜃 𝑡𝑡2 − 𝑡𝑡1
𝛿𝛿𝛿𝛿 𝑛𝑛
0, ∀∆𝑡𝑡, ∆𝑡𝑡 > 0
Design Life, Median, and Mode: 𝑅𝑅𝑆𝑆 (𝑡𝑡) = � 𝑅𝑅𝑖𝑖 (𝑡𝑡)
1 𝑖𝑖=1
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝛿𝛿𝛿𝛿(𝑡𝑡) 𝑡𝑡𝑅𝑅 = 𝜃𝜃 ∗ (− ln(𝑅𝑅))𝛽𝛽 Multi-component CFR:
𝑓𝑓(𝑡𝑡) = − = 1
𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝑅𝑅𝑆𝑆 (𝑡𝑡) = exp (−𝜆𝜆𝑠𝑠 ∗ 𝑡𝑡)
Properties: 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜃𝜃 ∗ (− ln(0.5))𝛽𝛽 𝑛𝑛
∞ 1
I) 𝑓𝑓(𝑡𝑡) ≥ 0, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞), II) ∫0 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1, III) 𝑡𝑡 ≥ 0 1 𝛽𝛽 𝜆𝜆𝑆𝑆 = � 𝜆𝜆𝑖𝑖
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜃𝜃 �1 − 𝛽𝛽 � , 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 > 1 𝑖𝑖=1
1
𝑡𝑡 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 ≤ 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑅𝑅(𝑡𝑡) = exp �− � 𝜆𝜆(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ � 𝜆𝜆𝑠𝑠
See Table 2. 𝛽𝛽1 -life R(t) = 0.99, 𝛽𝛽0.1 -life R(t) = 0.999
0 Parallel configuration:
Hazard rate / Failure rate: 𝑛𝑛
𝛿𝛿𝛿𝛿(𝑡𝑡) 1 𝑓𝑓(𝑡𝑡) Burn-In Screening for Weibull: 𝑅𝑅𝑆𝑆 (𝑡𝑡) = 1 − �[1 − 𝑅𝑅𝑖𝑖 (𝑡𝑡)]
𝜆𝜆(𝑡𝑡) = − ∗ =
𝛿𝛿𝛿𝛿 𝑅𝑅(𝑡𝑡) 𝑅𝑅(𝑡𝑡) 𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑡𝑡 + 𝑇𝑇0 𝛽𝛽 𝑇𝑇0 𝛽𝛽 𝑖𝑖=1
Properties: 𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = = exp �− � � +� � � Two-component CFR:
𝑅𝑅(𝑇𝑇0 ) 𝜃𝜃 𝜃𝜃
I) 0 ≤ 𝜆𝜆(𝑡𝑡) ∗ Δ𝑡𝑡 ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) II) 𝜆𝜆(𝑡𝑡) ≥ 0, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) III) 1 𝑅𝑅𝑆𝑆 (𝑡𝑡) = 1 − (1 − 𝑒𝑒 −𝜆𝜆1 ∗𝑡𝑡 ) ∗ (1 − 𝑒𝑒 −𝜆𝜆2 ∗𝑡𝑡 )
Δ𝑡𝑡 > 0 𝑇𝑇0 𝛽𝛽 𝛽𝛽 = 𝑒𝑒 −𝜆𝜆1 ∗𝑡𝑡 + 𝑒𝑒 −𝜆𝜆2 ∗𝑡𝑡
𝑡𝑡𝑅𝑅 = 𝜃𝜃 �− ln(𝑅𝑅) + � � � − 𝑇𝑇0 − 𝑒𝑒 −(𝜆𝜆1 +𝜆𝜆2 )∗𝑡𝑡
𝜃𝜃
∞ ∞ ∞ 1 1 1
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑 = � [1 − 𝐹𝐹(𝑡𝑡)]𝑑𝑑𝑑𝑑 = � 𝑡𝑡 ∗ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = + −
𝜆𝜆1 𝜆𝜆2 𝜆𝜆1 + 𝜆𝜆2
0 0 0 Identical Weibull Components:

If a system consists of n serially related components
𝜎𝜎 2 = �� 𝑡𝑡 2 ∗ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑� − (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2 k-out-of-n Redundancy: k or more successes
n∗β
0
∞ λ(t) = β ∗ (𝑡𝑡)𝛽𝛽−1 𝑛𝑛
θ ℙ(𝑥𝑥) = � � 𝑅𝑅 𝑥𝑥 (1 − 𝑅𝑅)𝑛𝑛−𝑥𝑥
𝜎𝜎 2 = � (𝑡𝑡 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑡𝑡 𝛽𝛽 𝑥𝑥
−𝑛𝑛∗� �
0 𝑅𝑅(𝑡𝑡) = 𝑒𝑒 which is a Weibull distribution with shape parameter
𝜃𝜃 𝑛𝑛 𝑛𝑛!
Residual MTTF: 𝜃𝜃 � �=
∞ 𝛽𝛽 and scale parameter 𝑛𝑛1/𝛽𝛽. 𝑥𝑥 𝑥𝑥! (𝑛𝑛 − 𝑥𝑥)!
1 𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇0 ) = ∗ � 𝑅𝑅(𝑡𝑡 ′ )𝑑𝑑𝑑𝑑′
𝑅𝑅(𝑇𝑇0 ) 𝑇𝑇0 𝑅𝑅𝑠𝑠 = � ℙ(𝑥𝑥)
The Three-Parameter Weibull: 𝑥𝑥=𝑘𝑘
Whenever there is a minimum life: t0 Exponential Failures:
Conditional reliability: 𝑛𝑛
𝑡𝑡−𝑡𝑡0 𝛽𝛽 𝑛𝑛
𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −� 𝜃𝜃 � , 𝑡𝑡
> 𝑡𝑡0 𝑅𝑅𝑠𝑠 (𝑡𝑡) = � � � 𝑒𝑒 −𝜆𝜆𝜆𝜆𝜆𝜆 [1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 ]𝑛𝑛−𝑥𝑥
𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = 𝑥𝑥
𝑅𝑅(𝑇𝑇0 ) β 𝑡𝑡 − 𝑡𝑡0 𝛽𝛽−1 𝑥𝑥=𝑘𝑘
λ(t) = ∗� � , 𝑡𝑡 > 𝑡𝑡0 𝑛𝑛
θ 𝜃𝜃 ∞
1 1
Median: 𝑅𝑅(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ) = 0.5 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑅𝑅𝑠𝑠 (𝑡𝑡) 𝑑𝑑𝑑𝑑 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡0 + 𝜃𝜃 ∗ Γ �1 + � 0 𝜆𝜆 𝑥𝑥
Mode: 𝑓𝑓(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) = max 𝑓𝑓(𝑡𝑡) 𝛽𝛽 𝑥𝑥=𝑘𝑘
0≤𝑡𝑡<∞ 1
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡0 + 𝜃𝜃 ∗ (− ln(0.5))𝛽𝛽 Chapter 6 – State-Dependent Systems
1
Cumulative failure rate: 𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + 𝜃𝜃 ∗ (− ln(𝑅𝑅))𝛽𝛽 Two component parallel (redundant) system:
𝑡𝑡
𝐿𝐿(𝑡𝑡) = � 𝜆𝜆(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ 𝜎𝜎 2 is the same as for the 2-parameter Weibull 𝑅𝑅𝑝𝑝 (𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡), ∀t, t ∈ [0, ∞)
0 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡) + 𝑃𝑃4 (𝑡𝑡) = 1, ∀t, t ∈ [0, ∞)
Average failure rate:
𝑡𝑡 Redundancy with Weibull Failures:
�∫𝑡𝑡 2 𝜆𝜆(𝑡𝑡′)𝑑𝑑𝑑𝑑′� �ln�𝑅𝑅(𝑡𝑡1 )� − ln�𝑅𝑅(𝑡𝑡2 )�� 𝑡𝑡 𝛽𝛽 𝑡𝑡 𝛽𝛽 ∀t, t ∈ [0, ∞):
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1 , 𝑡𝑡2 ) = 1 = 𝑅𝑅𝑠𝑠 (𝑡𝑡) = 2𝑒𝑒 −�𝜃𝜃� − 𝑒𝑒 −2�𝜃𝜃� Name the states: 𝑃𝑃1 (𝑡𝑡): probability that at time t …
𝑡𝑡2 − 𝑡𝑡1 𝑡𝑡2 − 𝑡𝑡1 ∞ 𝑡𝑡 𝛽𝛽 ∞ 𝑡𝑡 𝛽𝛽 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 2 ∗ � 𝑒𝑒 −�𝜃𝜃� 𝑑𝑑𝑑𝑑 −� 𝑒𝑒 −2�𝜃𝜃� 𝑑𝑑𝑑𝑑
Chapter 3 – Constant Failure Rate Model 0 0
𝑃𝑃2 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃2 (𝑡𝑡) + 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃2 (𝑡𝑡)
𝑡𝑡 𝛽𝛽 𝑃𝑃3 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃3 (𝑡𝑡) + 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃3 (𝑡𝑡)
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −𝜆𝜆𝜆𝜆 , 𝑡𝑡 ≥ 0 𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 , 𝑡𝑡 ≥ 0 𝛽𝛽 𝑡𝑡 𝛽𝛽−1 2 − 2𝑒𝑒 −�𝜃𝜃� 𝑃𝑃4 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃4 (𝑡𝑡) + 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃3 (𝑡𝑡) + 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃2 (𝑡𝑡)
1 1 𝜆𝜆𝑆𝑆 (𝑡𝑡) = ∗� � ∗
𝑓𝑓(𝑡𝑡) = 𝜆𝜆 ∗ 𝑒𝑒 −𝜆𝜆𝜆𝜆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜎𝜎 2 = 2 𝜃𝜃 𝜃𝜃 𝑡𝑡 𝛽𝛽 Note that
𝜆𝜆 𝜆𝜆 2 − 𝑒𝑒 −�𝜃𝜃� 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) = (1 − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ −𝜆𝜆2 ∗ Δ𝑡𝑡) ∗ 𝑃𝑃1 (𝑡𝑡)
𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡)
Memoryless: Normal Distribution: = −𝜆𝜆1 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ 𝑃𝑃1 (𝑡𝑡)
Δ𝑡𝑡
𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑒𝑒 −𝜆𝜆∗𝑇𝑇0 ∗ 𝑒𝑒 −𝜆𝜆∗𝑡𝑡 1 1 (𝑡𝑡 − 𝜇𝜇)2 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡)
𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = = = 𝑅𝑅(𝑡𝑡) 𝑓𝑓(𝑡𝑡) = exp �− ∗ �, −∞ < 𝑡𝑡 < ∞ = −(𝜆𝜆1 + 𝜆𝜆2 )𝑃𝑃1 (𝑡𝑡)
𝑅𝑅(𝑇𝑇0 ) 𝑒𝑒 −𝜆𝜆∗𝑇𝑇0 𝜎𝜎√2𝜋𝜋 2 𝜎𝜎 2 Δ𝑡𝑡
𝑡𝑡 − 𝜇𝜇 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡) 𝛿𝛿𝑃𝑃1 (𝑡𝑡)
R(t) = 1 − Φ � � lim � �= = −(𝜆𝜆1 + 𝜆𝜆2 )𝑃𝑃1 (𝑡𝑡),
𝜎𝜎 Δ𝑡𝑡→0 Δ𝑡𝑡 𝛿𝛿𝛿𝛿
The Two-Parameter Exponential Distribution: 𝑇𝑇 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇
𝐹𝐹(𝑡𝑡) = ℙ{𝑇𝑇 < 𝑡𝑡} = ℙ � < � = ℙ �𝑧𝑧 < � = Φ� � ∀t, t ∈ [0, ∞)
Guaranteed lifetime: 𝑡𝑡0 𝜎𝜎 𝜎𝜎 𝜎𝜎 𝜎𝜎
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝐼𝐼 = {1, 2, 3, 4}
𝑓𝑓(𝑡𝑡) 𝑓𝑓(𝑡𝑡) 𝑇𝑇 − 𝜇𝜇 0 ≤ 𝑃𝑃1 (𝑡𝑡) ≤ 1,
𝑓𝑓(𝑡𝑡) = − = λe−λ(t−t0 ) , 0 < 𝑡𝑡0 ≤ 𝑡𝑡 < ∞ 𝜆𝜆(𝑡𝑡) = = , 𝑧𝑧 = ∀t, t ∈ [0, ∞)
𝛿𝛿𝛿𝛿 𝑅𝑅(𝑡𝑡) 1 − Φ �𝑡𝑡 − 𝜇𝜇 � 𝜎𝜎 0 ≤ 𝑃𝑃2 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −λ(t−t0 ) , 𝑡𝑡 ≥ 𝑡𝑡0 σ = 1/λ 𝜎𝜎
0 ≤ 𝑃𝑃3 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡0 + 1/𝜆𝜆 The mode occurs at t0
0 ≤ 𝑃𝑃4 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡0 + ln [0.5]/−𝜆𝜆 𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + ln [𝑅𝑅]/−𝜆𝜆 Lognormal distribution: See Table 3. 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡) + 𝑃𝑃4 (𝑡𝑡) = 1, ∀t, t ∈ [0, ∞)
s = shape parameter and tmed = location parameter. 𝑃𝑃1 (0) = ⋯ , 𝑃𝑃2 (0) = ⋯ , 𝑃𝑃3 (0) = ⋯ , 𝑃𝑃4 (0) = ⋯ , 𝑅𝑅(𝑡𝑡) = ⋯
The Poisson Process: 1 1 𝑡𝑡 2 Two component serial system:
𝑓𝑓(𝑡𝑡) = ∗ exp �− 2 ∗ ln � � � , 𝑡𝑡 ≥ 0
If a component having a constant failure rate λ is immediately 𝑠𝑠 ∗ 𝑡𝑡 ∗ √2𝜋𝜋 2𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑠𝑠 (𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡), ∀t, t ∈ [0, ∞)
repaired or replaced upon failing, the number of failures observed 𝑠𝑠 2 𝑇𝑇 − 𝜇𝜇
over a time period t has a Poisson distribution. The probability of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ exp � � , 𝑧𝑧 = Decomposition:
2 𝜎𝜎 𝑅𝑅𝑠𝑠 = 𝑅𝑅𝐸𝐸 𝑅𝑅(𝑏𝑏) + (1 − 𝑅𝑅𝐸𝐸 )𝑅𝑅(𝑐𝑐)
observing n failures in time t is given by the Poisson probability mass 2
𝜎𝜎 2 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ exp[𝑠𝑠 2 ] ∗ [exp(𝑠𝑠 2 ) − 1]
function pn(t): 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
(λt)n 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = , 𝑡𝑡𝑅𝑅 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑒𝑒 𝑠𝑠∗𝑧𝑧(1−𝑅𝑅)
𝑝𝑝𝑛𝑛 (𝑡𝑡) = 𝑒𝑒 −λt ∗ , 𝑛𝑛 = 0,1,2,3,4, … exp(𝑠𝑠 2 )
𝑛𝑛! 1 𝑡𝑡 1 𝑡𝑡
With mean over time t is given by λt, and the variance of the 𝐹𝐹(𝑡𝑡) = Φ � ∗ ln � �� , 𝑅𝑅(𝑡𝑡) = 1 − Φ � ∗ ln � ��
𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
distribution is also λt. See Table 1
No failures: (exponential)
𝑆𝑆
𝑒𝑒 −𝜆𝜆𝜆𝜆 ∗ (𝜆𝜆𝜆𝜆)0
𝑝𝑝0 = = e−𝜆𝜆𝜆𝜆 = 𝑅𝑅(𝑡𝑡), 𝑅𝑅𝑆𝑆 (𝑡𝑡) = � 𝑝𝑝𝑛𝑛 (𝑡𝑡) Common-Mode Failures;
0!
𝑛𝑛=0


Redundancy and the CFR Model
R(t) = 1 − (1 − 𝑒𝑒 λt )2 = 2𝑒𝑒 −λt − 𝑒𝑒 −2λt
𝑓𝑓(𝑡𝑡) 𝜆𝜆(1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 )
𝜆𝜆(𝑡𝑡) = =
𝑅𝑅(𝑡𝑡) 1 − 0.5 ∗ 𝑒𝑒 −𝜆𝜆𝜆𝜆
As 𝑡𝑡 → ∞, 𝜆𝜆(𝑡𝑡) → 𝜆𝜆. Which is CFR.
1.5
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
λ




1

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper remcodewit. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52355 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  5x  verkocht
  • (1)
In winkelwagen
Toegevoegd