100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Microbial Metabolism (NWI-BB090) Radboud Univeristy €6,99
In winkelwagen

Samenvatting

Summary Microbial Metabolism (NWI-BB090) Radboud Univeristy

 78 keer bekeken  1 keer verkocht

Detailed summary of the lectures from Microbial metabolism, including images. I completed this course with a 8,5.

Voorbeeld 4 van de 35  pagina's

  • 23 februari 2021
  • 35
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (4)
avatar-seller
SusanneElise
BIOLOGY
YEAR 2
QUARTER 1
2019/2020




Microbial Metabolism




SUMMARY OF THE COURSE MICROBIAL METABOLISM
NWI-BB090
ELISE REUVEKAMP

,Content
Bioenergetics ........................................................................................................................................... 2
Glycolysis, fermentation, aerobic respiration ......................................................................................... 5
Anaerobic respiration, acetogenesis, methanogenesis, methanotrophy, syntrophy ........................... 10
Chemolithotrophy ................................................................................................................................. 16
Spookmicrobes and anammox .............................................................................................................. 19
............................................................................................................................................................... 19
Phototrophy and biosynthesis .............................................................................................................. 21
Autotrophy, N2 fixation and carbon cycle ............................................................................................ 26
Nitrogen cycle and sulfur cycle ............................................................................................................. 32

,Bioenergetics
→ Brock chapter 3.3-3.7

Bioenergetics is a field in biochemistry and cell
biology that concerns energy flow through living
systems

Metabolism is the sum total of all chemical
reactions that occur in a cell, categorized by:

- Catabolism: energy releasing reactions
- Anabolism: energy consuming
biosynthetic reactions

Chemotrophs and phototrophs

Organisms that conserve energy from chemicals are called chemotrophs

- Chemoorganotrophs: conserve energy from organic chemicals
- Chemolithotrophs: tap energy available from oxidation of inorganic compounds

Organisms that use light as energy source are called phototrophs, that contain chlorophyll and other
pigments that convert light energy into ATP.

- Oxygenic photosynthesis, where O2 is produced
- Anoxygenic photosynthesis, where O2 is not produced

Regardless of how a microorganism conserves energy, be it from chemicals or from light, all cells
require large amounts of carbon in one form or another to make new cell materials.

- Heterotrophs obtain this from an organic compound
- Autotrophs use carbon dioxide as its carbon source. There are also called primary producers,
because they synthesize new organic matter from inorganic carbon (CO2). The major
pathway through which this happens is called the Calvin cycle.

Bioenergetics

First law of thermodynamics: energy can be transformed from one form to another but cannot be
generated or destroyed.

Making ATP is the ultimate goal of microorganisms. To make ATP, energy from chemical reactions is
required. Energy is defined as the ability to do work measured in KiloJoules. All chemical reactions
are accompanied by changes in energy, either being required or released as the reaction proceeds.

Basic principles of bioenergetics:

- Free energy is the energy that is available to do work, expressed in ΔG0′. It tells you only the
amount of energy released or required, not which reaction is going faster.
- -ΔG0′ → exergonic reaction that will release free energy (burn sugar)
- +ΔG0′ → endergonic reaction that will require free energy (make sugar)

Coupling of endergonic and exergonic reactions, lead to proceeding endergonic reactions by the use
of energy released by exergonic reactions. The break down of glucose releases a free energy of -2863
kJ per mole and the formation of ATP costs +32 kJ per mole, so 89 moles of ATP can be generated

, from 1 molecule of glucose. However it is going to be less as some energy is lost as heat to drive the
reaction forward.

Catalysis and enzymes

Kinetics is the velocity of catalysis, combined with thermodynamics, the reaction rate can be
determined.

All energy reaction have an
activation energy barrier, which
prevent exergonic reactions from
happening spontaneously. For
example the reaction of sugar to CO2
is exergonic, but sugar doesn’t
change to CO2 at home for ages.
Through the use of catalysts:
activation energy can be lowered.

Catalysts: are not consumed in the
reaction, lower the activation energy, Increase the reaction rate and do not affect energetics or
equilibrium of a reaction

Enzymes: are biological catalysts, typically proteins, highly specific, generally larger than substrate,
typically rely on weak bonds and have an active site: region of enzyme that binds substrate

Enzyme nomenclature:

- Oxidoreductases → catalyses oxido-
reductions, where the substrate
oxidized is regarded as electron donor
- Transferases → catalysts that transfer a
group from one compound to another
- Hydrolases → catalyses via hydrolysis of
various bonds
- Lyases → cleave off C-C, C-O, C-N and
other bonds by other means than
hydrolysis or oxidation
- Isomerases → catalyse changes within one molecule
- Ligases → catalyse the joining of two molecules with hydrolysis of diphosphate bond in ATP

Enzymes make use of cofactors, that assist enzyme during catalysis of reactions. Mostly metals ions
or coenzymes are cofactors. Tight covalent bounds are prosthetic groups and non-covalent bound
are coenzymes that interact with different enzymes for example NADH.

NAD+ is a very common redox coenzyme that associates with the redox enzymes that catalyse the
reaction. NADH is the reduced form of NAD+. Electron shuttling is common, so electrons removed
from an electron donor by an enzyme that oxidizes that donor are used to reduce NAD+ to NADH
and the NADH can be used in another enzyme to oxidize NADH back to NAD+.

Electron donors and acceptors

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper SusanneElise. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53022 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd