100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Projectile Motion Physical Science Grade 12 R50,00   Add to cart

Summary

Summary Projectile Motion Physical Science Grade 12

 2 views  0 purchase

These notes are provide detailed information on the projectile motion chapter in the Mind Action Series Physical Science Grade 12 textbook. These notes are colourful, have diagrams for further explanation and are very easily understood.

Preview 1 out of 3  pages

  • March 25, 2022
  • 3
  • 2021/2022
  • Summary
All documents for this subject (575)
avatar-seller
jacquelinedossantos
{ free fall } Chapter 4
projectile projected vertically
o x air resistance / other forces upwards which falls below og level:
therefore grav acc = 9.8 m.s-2
Vi @ A = upwards V decr as obj rises
@ max height, Vf = 0
Definition:
o If the object moves up and down max height when fall, Vi = 0
under the influence of the Vi at A = -Vi at C
gravitational force with no other
Vf = maximum (at ground/D)
force acting
o Object falls freely w/ Δt AB = Δt BC
gravitational acceleration
Δttotal = Δt AB + BC + CD
where g = 9.8 m.s-2 towards
the surface of the Earth Δy = distance of AD
a = k (9.8m.s-2)
{ going up & down }
Equations of motion to determine v, Δt & Δx
PROJECTILE EXAMPLES:
(Δy) bcz a = k (constant) in free fall
( l o o k @ d i a g r a m o n p g 3 1)

Vf = Vi + aΔt
TAKE DOWN = POSITIVE
Δy = ViΔt + ½aΔt2
Vi = 0 m.s-1 a = 9.8m.s-2 Δt =
Vf2 = Vi2 + 2aΔy 3s
➢ Choose direction (down / up) = positive & keep
this unchanged throughout. Δy = ?
➢ Indicate the direction chosen as positive at Δy = ViΔt + ½ a Δt2
the start of your answers.
Δy = (0)(3) + ½ (9.8)(3)2
Terminal velocity: Δy = 44.1 m (down)
o When force of air resistance
becomes = to weight of the obj, Vf = ?
\\
the Fnet is 0 & the obj will x longer Vf = Vi + aΔt
accelerate by will fall w/ constant v
Vf = 0 + (9.8)(3)
! NB ! Vf = 29.4 m.s-1 , down
➢ projectiles = same Δt to reach max height
from the point of upward launch to fall
back to the point of launch
Vi = 4.7 m.s-1 a = 9.8m.s-2 Δy = 44.1 m
EXPLANATION OF PROJECTILES Δt = ?
b
projectile projected vertically Vf2 = Vi2 + 2aΔy
upwards & falls back to same level: Vf2 = (4.7)2 + 2(9.8)(44.1)

Vi @ A = upwards direction V decr as obj Vf = 29.77 m.s-1 , down
rises

Vf = Vi + aΔt

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jacquelinedossantos. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R50,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78291 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R50,00
  • (0)
  Buy now