,Contents
1. Complex Numbers and De-Moivre's Theorem 1-19
2. Quadratic Expressions 20-24
3. Theory of Equations 25-38
4. Functions 39-49
5. Mathematical Induction 50-53
6. Partial Fractions 54-57
7. Binomial Theorem 58-69
8. Permutations and Combinations 70-80
9. Matrices and Determinants 81-101
10. Measures of Dispersion 102-110
11. Probability 111-132
12. Trigonometric Functions and Identities 133-148
13. Trigonometric Equations 149-153
14. Properties of Triangles 154-168
15. Inverse Trigonometric Functions 169-173
16. Hyperbolic Functions 174-178
17. Rectangular Cartesian Coordinates 179-190
18. Straight Line and Pair of Straight Lines 191-221
19. Circle and System of Circles 222-252
20. Conic Sections 253-276
21. Vector Algebra 277-303
22. Three Dimensional Geometry 304-320
23. Limits and Continuity 321-335
24. Differentiation 336-352
25. Applications of Derivatives 353-370
26. Indefinite Integrals 371-394
27. Definite Integrals and Its Applications 395-412
28. Differential Equations 413-426
29. Miscellaneous 427-428
Practice Sets (1-3) 429-472
, 1
Complex Numbers and
De-Moivre’s Theorem
1. If 1, a , a 2 , ...., a n − 1 are the nth roots of unity. Sol. (d)
n −1 2α = −1 − i 3, 2 β = −1 + i 3
1
Then ∑ − ai
is equal to (5α 4 + 5β 4 + 7α −1β −1)
i = 12 [17 Sep. 2020, Shift-I] 7
= 5(α 4 + β 4) +
(n − 2 ) 2 n −1 + 1 αβ
(a) (n − 2 )2 n (b)
2n − 1 7
= 5[(α 2 + β 2)2 − 2α 2β 2] +
(n − 2 ) 2 n − 1 1 α ⋅β
(c) (d)
2n − 1 (n − 2 ) 2 n 1 2
= 5 (2α + 2 β)2 − 2αβ − 2 α 2 β 2 +
7
Sol. (b) 4 α ⋅β
n −1 1
∑ 1, α , α 2 , ......, α n−1 are the nth root 1 2
i =1 2− αi = 5 × 4 − 2 − 2 + 7
4
of unity
Q x n −1 = 0 = 5 [1 − 2] + 7 = 2
⇒ x n − 1 = (x − 1)(x − α)(x − α 2)......(x − α n −1) i
3. If a + bi = , then (a , b) =
⇒ log(x n − 1) = log(x − 1) + log(x − α) 1− i [17 Sep. 2020, Shift-I]
+ ......log(x − α n −1) −1 −1
(a) , (b) ,
1 1
Differentiating w.r.t ‘x’, we get 2 2 2 2
1 −1 −1 1
nx n −1 1 1 1 (c) , (d) ,
⇒ = + + ...... + 2 2 2 2
x −1
n
( x − 1) ( x − α) (x − α n −1)
At (x = 2) Sol. (d)
n ⋅ 2n −1 1 1 1 a + bi =
i
⇒ =1+ + + ...... + 1− i
2n − 1 2− α 2− α2 2 − α n −1
i(1 + i) 1 i 1 1
⇒ a + bi = =− + ⇒ a=− ,b=
n −1 1 n ⋅ 2n −1 (n − 2)2n −1 + 1 2 2 2 2 2
⇒ ∑ = n − 1 =
i =1 2− α 2 −1
i
2n − 1 4. Let z1, z 2 be two complex numbers such that
3π
2. If 2α = − 1 − i 3 and 2β = − 1 + i 3, then z1 − iz 2 = 0 and arg(z1 z 2) = , then arg(z1) =
4
5α 4 + 5β 4 + 7 α −1β −1 is equal to [17 Sep. 2020, Shift-II]
[17 Sep. 2020, Shift-I] π − π π π
(a) (b) (c) (d)
(a) −1 (b) −2 (c) 0 (d) 2 4 8 8 3
, 2 AP EAMCET Chapterwise Mathematics
Sol. (c) 1
7. Let the complex numbers α and lie on
Given z1 − i z2 = 0 α
⇒ z1 = i z2 ⇒ z1 = iz2 ⇒ z1 = − iz2 circles (x − x 0)2 + (y − y 0)2 = r 2 and
π
Clearly argument of z1 = argument of z2 − (x − x 0)2 + (y − y 0)2 = 4 r 2 respectively.
2
π If z 0 = x 0 + iy 0 satisfies the equation 2 | z 0 |2 =
or argument z1 = argument z2 −
2 r 2 + 2, then| α | = [18 Sep. 2020, Shift-I]
π
⇒ argument z2 = argument z1 + (a)
1
(b)
1
(c)
1
(d)
1
2 2 2 7 3
Let argument z1 = α
3π Sol. (c)
Then, given argument ( z1 z2 ) = As point α lies on the circle
4
3π (x − x 0)2 + (y − y0)2 = r 2
⇒ argument z1 + argument z2 =
4 ∴ |α − z0|2 = r 2, where z0 = x 0 + iy0
π 3π ⇒ |α|2 + |z0|2 −(α z0 + α z0) = r 2
α+α+ = …(i)
2 4 1
3π π Q lies on the circle (x − x 0)2 + (y − y0)2 = 4r 2
2α = − α
4 2 1
2
π ∴ − z0 = 4r 2
⇒ α= α
8
1 αz αz
(3 + 2 i) (4 − 7 i) (12 + 13 i) ⇒ + |z0|2 − 02 + 02 = 4r 2
5. If x + iy = , then |α|2 |α| |α|
(13 − 12 i) (2 − 3 i) (11 + 3 i)
⇒ 1 + |z0|2|α|2 − (αz0 + α z0) = 4r 2|α|2 …(ii)
x 2 + y2 = [17 Sep. 2020, Shift-II]
By subtracting Eqs. (i) and (ii), we get
1
(a) 1 (b) 2 (c) (d) 3 1−|α|2 −|z0|2 (1−|α|2) = r 2(4|α|2 −1)
2
⇒ (|α|2 −1) (|z0|2 −1) = r 2(4|α|2 −1)
Sol. (c)
Given, r2 + 2
Q |z0|2 = , we get
(3 + 2i) (4 − 7i)(12 + 13i) 2
z = x + iy =
(13 − 12i) (2 − 3i) (11 + 3i) r2
(|α|2 −1) = r 2(4|α|2 −1)
|3 + 2i|⋅ |4 − 7i|⋅ |12 + 13i| 2
|z| =
|13 − 12i|⋅ |2 − 3i|⋅ |11 + 3i| ⇒ |α|2 −1 = 8|α|2 −2
1
( 32 + 22) ( 42 + 72) ( (122 + 132) ⇒ 7|α|2 = 1 ⇒ |α|=
= 7
( 132 + 122) ⋅ ( 22 + 32) ( 112 + 32)
8. If α and β are non-real roots of
42 + 72 65 1
= = = x 3 − x 2 − x − 2 = 0, then
112 + 32 130 2
α 2020 + β 2020 + α 2020 ⋅ β 2020 =
1 1
⇒ x + y =
2 2
or x + y =
2 2
[18 Sep. 2020, Shift-I]
2 2
(a) 1 (b) 2020
6. What is the modulus of the complex number (c) 1 + α + β (d) − 1
(1 + 2 i) (− 2 + i)? [17 Sep. 2020, Shift-II]
Sol. (c)
(a) 5 (b) 5 (c) 5 5 (d) 35 Given equation, x 3 − x 2 − x − 2 = 0
Sol. (b) ⇒ (x − 2)(x 2 + x + 1) = 0
|($i + 2$i) ⋅ (−2 + i$)| = |$i + 2i||
⋅ −2 + i| −1 ± 3i
∴ α and β are or we can say
= ( 12 + 22) ⋅ ( (−2)2 + 12) 2
α and β are non-real complex roots of unity.
= 5× 5 = 5.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller kbzone. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for R146,41. You're not tied to anything after your purchase.