100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Statistiek 3 Klinische leerlijn €3,99   In winkelwagen

Samenvatting

Samenvatting Statistiek 3 Klinische leerlijn

3 beoordelingen
 107 keer bekeken  6 keer verkocht

Engelse samenvatting van het boek, de colleges, de quizzes (gedeeltelijk)en de Q&A's (behalve de laatste). Warner (2020) is gebruikt in combinatie met Agresti en Finley.

Voorbeeld 4 van de 34  pagina's

  • Nee
  • Verplichte hoofdstukken
  • 9 maart 2021
  • 34
  • 2020/2021
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (2)

3  beoordelingen

review-writer-avatar

Door: lzaim • 3 jaar geleden

review-writer-avatar

Door: steijnz82 • 3 jaar geleden

review-writer-avatar

Door: m1998 • 3 jaar geleden

avatar-seller
heijden99
Summery statistics 3 clinical tract
In this summery information mentioned before is not necessarily repeated
Warner (2020) and Agresti and Finlay (2013) are used as literature.

Lecture 1

Important matters for the application of statistics (“Applied Statistics”):
- Selecting a sample from a population
- Deciding whether a sample is representative
- Descriptive or inferential statistics
- Measurement levels (NOIR) and types of variables (categorical/quantitative)
- Selecting the correct statistical analysis (focus of statistic 3)
- Experimental versus non-experimental research design

Schema when to select which test:




Descriptive statistics: summarizes population or sample data with numbers, tables and graphs
Inferential statistics: making predictions about population parameters, based on a (random)
sample of data. With what kind of certainty these predictions can be made.

,Population: total set of participant relevant for the research question
Sample: a subset of the population about who the data is collected

Reliability (precision): after repeated measures similar results (reliable). Large sample more
precise as a small sample.
Validity (bias): to what extend the sample a representation is of the population.




Measurement scales (NOIR):
- Categorical/qualitative
o Nominal: unordered categories
o Ordinal: ordered categories
- Quantitative/numerical
o Interval: equal distance between consecutive values (°C)
o Ratio: equal distance and true zero point (K)




Range:
- Discrete: individual measurement unite. No answers that aren’t whole (number of
brothers/ sisters)
- Continuous: infinitely divisible measurement unit (with decimals)

3 important dimensions in descriptive statistics:
- Central tendency (typical observation): mean mode median
- Dispersion (variability in observations): standard deviation, variance, interquartile
range
- Position (relative position of the observations): percentile, quartile etc.
In descriptive statistics there are no uncertainties.

Sample problems with inferential statistics:
- Sampling error: natural (random) sampling variation (standard error). Can be
overcome by a confidents interval (for example 95%)
- Sampling bias: selective sampling
- Response bias: incorrect answer. Can be because of shame, obstructive behaviour or a
question that is difficult.

, - Non-Response bias: selective participation
Solution: A random (or other probability) sampling approach of sufficient size that generates
data for everyone approached, with correct responses on all items for all subjects.

Dimensions of distribution:
- Population distribution: distribution of the population
- Sample data distribution: distribution of the sample
- Sampling distribution: The probability distribution for the sample statistic
(proportion/mean/regression coefficient). To interpret as the result of repetitive taking
of a sample of size n.
π (1−π )
o Standard deviation:
√ n
o Standard error (σM) estimated by SEM
 Larger sample  lower standard error

Central Limit Theorem for sampling distribution: eventually all sampling distributions will
become a normal distribution.
- With a population distribution that is a normal distribution even with a small sample
the sampling distribution will be a normal distribution.
- With a population distribution that is skewed there will be a sampling distribution that
is a normal distribution with a large enough sample.


Empirical rule for normal distribution:
- 68% within ± 1𝜎 of the mean
- 95% within ± 2𝜎 of the mean
- almost 100% within ± 3𝜎 of the mean

Types of probability distributions:
- (Standard) normal distribution  z-statistic
o Sampling distribution for proportion(s) when H0 holds.
o (Sampling distribution for mean when H0 holds and when the population
standard deviation is known)
- Student’s T distribution(s)  t-statistic
o Sampling distribution for mean when H0 holds and when the population
standard deviation is unknown.
o Sampling distribution for regression coefficient(s) when H0 holds.
o Small sample  t-distribution less like z-distribution
o Large sample  t-distribution almost exactly like z-distribution (wider tails)
- Chi square distribution(s)  χ2-statistic
o Sampling distribution for squared deviations (in frequencies)
of categorical variables when H0 holds.
o Skewed to the right, table works like t-table
- Fisher’s distribution(s)  F-statistic

, o Sampling distribution for ANOVA omnibus test of
means when H0 holds
o Skewed to the right, table works like t-table




5 steps of a hypothesis test:
- Defining assumptions
- Set up hypothesis
- Calculate test-statistic (e.g. t-value)
- Determine p-value (p < 0.05 zekerder om H0 te verwerpen)
- Draw conclusion

Type 1 error (alpha): false positive (pregnant men). You reject H0 where it would be correct
to not reject H0. Depends on the chosen significance level.
Type 2 error (Beta): false negative. You do not reject H0 where it would be correct to reject
H0. Depends on:
- Effect size: large true effect size  overlapping area becomes smaller  reduces type
2 error
- Sample size: larger  distributions smaller  improved power/ reduced type 2 error
- Variance in the sample.
Smaller the chosen type 1 error  larger type 2 error

Talking about population statistics  Greek letters

Significance level: P-value, type 1 error, alpha
Power: 1- beta, probability to draw the correct conclusion
Sample size: n
Effect size: d, larger difference true state in the world and the H0 larger effect size.
When the effect size drops below the critical value the H0 cannot be rejected (type 2 error).

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper heijden99. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73918 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  6x  verkocht
  • (3)
  Kopen